Difference between revisions of "Parallel Numerics - Winter 13"
Jump to navigation
Jump to search
(Tutorium: Blaetter und C-Code komplett online) |
(additional notes online) |
||
Line 66: | Line 66: | ||
[http://www5.in.tum.de/lehre/vorlesungen/parnum/WS13/tutorium/code/sheet8_task3_serial.cpp sheet8_task3_serial.cpp] <br> | [http://www5.in.tum.de/lehre/vorlesungen/parnum/WS13/tutorium/code/sheet8_task3_serial.cpp sheet8_task3_serial.cpp] <br> | ||
[http://www5.in.tum.de/lehre/vorlesungen/parnum/WS13/tutorium/code/sheet8_task3_parallel.cpp sheet8_task3_parallel.cpp] | [http://www5.in.tum.de/lehre/vorlesungen/parnum/WS13/tutorium/code/sheet8_task3_parallel.cpp sheet8_task3_parallel.cpp] | ||
+ | || [http://www5.in.tum.de/lehre/vorlesungen/parnum/WS13/tutorium/Jacobi_Relaxation_Notes.pdf Jacobi_Relaxation_Notes] <br> | ||
+ | [http://www5.in.tum.de/lehre/vorlesungen/parnum/WS13/tutorium/sheet9-stationary.m sheet9-stationary.m] | ||
|- | |- | ||
− | | '''9''' || Gradient Methods, Preconditioning & Eigenvalues || [http://www5.in.tum.de/lehre/vorlesungen/parnum/WS13/tutorium/sheet9.pdf sheet9.pdf] || [http://www5.in.tum.de/lehre/vorlesungen/parnum/WS13/tutorium/sheet9_solution.pdf sheet9_solution.pdf] <br> [http://www5.in.tum.de/lehre/vorlesungen/parnum/WS13/tutorium/code/sheet9_task1_sequential.c ws9_task1_sequential.c] <br> [http://www5.in.tum.de/lehre/vorlesungen/parnum/WS13/tutorium/code/sheet9_task1_parallel.c ws9_task1_parallel.c] || | + | | '''9''' || Gradient Methods, Preconditioning & Eigenvalues || [http://www5.in.tum.de/lehre/vorlesungen/parnum/WS13/tutorium/sheet9.pdf sheet9.pdf] || [http://www5.in.tum.de/lehre/vorlesungen/parnum/WS13/tutorium/sheet9_solution.pdf sheet9_solution.pdf] <br> [http://www5.in.tum.de/lehre/vorlesungen/parnum/WS13/tutorium/code/sheet9_task1_sequential.c ws9_task1_sequential.c] <br> [http://www5.in.tum.de/lehre/vorlesungen/parnum/WS13/tutorium/code/sheet9_task1_parallel.c ws9_task1_parallel.c] || |
|- | |- | ||
| '''10''' || Domain Decomposition || [http://www5.in.tum.de/lehre/vorlesungen/parnum/WS13/tutorium/sheet10.pdf sheet10.pdf] || [http://www5.in.tum.de/lehre/vorlesungen/parnum/WS13/tutorium/sheet10_solution.pdf sheet10_solution.pdf] || | | '''10''' || Domain Decomposition || [http://www5.in.tum.de/lehre/vorlesungen/parnum/WS13/tutorium/sheet10.pdf sheet10.pdf] || [http://www5.in.tum.de/lehre/vorlesungen/parnum/WS13/tutorium/sheet10_solution.pdf sheet10_solution.pdf] || |
Revision as of 12:44, 15 January 2014
- Term
- Winter 13
- Lecturer
- Univ.-Prof. Dr. Thomas Huckle
- Time and Place
- Tuesday, 09:15-10:45, Room 02.07.023
- Audience
- CSE (compulsory course, 3rd semester), Mathematics (Master), Informatics (Master) (Modul IN2012)
- Tutorials
- Friday, 10:15-11:45, Room 02.07.023, Organization: Michael Lieb, M.Sc.
- Exam
- Do 20.2.14, 12:00-13:30, 5503.EG.350 (MW 0350, Egbert-von-Hoyer-Hörsaal)
- Semesterwochenstunden / ECTS Credits
- SWS (2V + 2Ü) / 5 Credits
- TUMonline
- [reference]
This course will be given in every winter term. The lectures and tutorials are conducted in English, and the course substitutes the German lecture "Numerik auf Parallelrechnern".
Contents
News
14.11.2013 | The tutorial on 15.11.2013 will take place. |
---|
Contents
- High-Performance Computing
- Performance: Analysis, Modeling, and Measurements
- Basic Linear Algebra Subprograms
- Direct Solution of Sparse Linear Systems
- Iterative Methods for Linear Systems
- Linear Eigenvalue Problems
- Programming in MPI
Course Material
Lecture Slides
- [Lecture 1]
- [Lecture 2]
- [Lecture 3,Material]
- [Lecture 4]
- [Lecture 5]
- [Lecture 6]
- [Lecture 7]
- [Lecture 8]
- [Lecture 9]
- [Lecture 10]
- [Full script]
Tutorials
Literature & External Links
- Introduction to High Performance Scientific Computing (Eijkhout, Chow, van de Geijn) [free download]
- Numerical Linear Algebra for High-Performance Computers (Dongarra, Duff, Sorensen, van der Vorst)
- Parallel Algorithms for Matrix Computations (Gallivan, Heath, Ng, Ortega,...)
- A User's Guide to MPI (Pacheco)
- Iterative Methods for Sparse Linear Systems (Saad)
- Loesung linearer Gleichungssysteme auf Parallelrechnern (Frommer)
- An Introduction To Quantum Computing for Non-Physicists