Parallel Numerics - Winter 13

From Sccswiki
Jump to navigation Jump to search
Term
Winter 13
Lecturer
Univ.-Prof. Dr. Thomas Huckle
Time and Place
Tuesday, 09:15-10:45, Room 02.07.023
Audience
CSE (compulsory course, 3rd semester), Mathematics (Master), Informatics (Master) (Modul IN2012)
Tutorials
Friday, 10:15-11:45, Room 02.07.023, Organization: Michael Lieb
Exam
to be defined
Semesterwochenstunden / ECTS Credits
SWS (2V + 2Ü) / 5 Credits
TUMonline
[reference]



This course will be given in every winter term. The lectures and tutorials are conducted in English, and the course substitutes the German lecture "Numerik auf Parallelrechnern".

News

19.09.2013 First lecture will be on 22.10.2013, first tutorial will be on 25.10.2013.

Contents

  1. High-Performance Computing
  2. Performance: Analysis, Modeling, and Measurements
  3. Basic Linear Algebra Subprograms
  4. Direct Solution of Sparse Linear Systems
  5. Iterative Methods for Linear Systems
  6. Linear Eigenvalue Problems
  7. Programming in MPI

Course Material

Lecture Notes

Slides

Tutorials

Tutorial Topics Worksheet Proposal for solution / code Additional (Slides)
1 Flynn's Taxonomy & MPI Basics sheet1.pdf sheet1_solution.pdf
ws1_task6.cpp
2 Numerical Integration & P2P Communication I sheet2.pdf
3 Vector-Vector Operations & P2P Communication II sheet3.pdf
4 Matrix-Matrix-Operations & P2P Communication III sheet4.pdf
5 Parallel Gaussian elimination & Collective Operations sheet5.pdf
6 Tridiagonal Matrices, Hockney/Golub method & Message Tags sheet6.pdf
7 Sparse Matrix-Vector Multiplication & MPI Communicators sheet7.pdf
8 Stationary Methods sheet8.pdf
9 Gradient Methods, Preconditioning & Eigenvalues sheet9.pdf
10 Domain Decomposition sheet10.pdf

Literature & External Links

  1. Introduction to High Performance Scientific Computing (Eijkhout, Chow, van de Geijn) [free download]
  2. Numerical Linear Algebra for High-Performance Computers (Dongarra, Duff, Sorensen, van der Vorst)
  3. Parallel Algorithms for Matrix Computations (Gallivan, Heath, Ng, Ortega,...)
  4. A User's Guide to MPI (Pacheco)
  5. Iterative Methods for Sparse Linear Systems (Saad)
  6. Loesung linearer Gleichungssysteme auf Parallelrechnern (Frommer)
  7. An Introduction To Quantum Computing for Non-Physicists

Exam

Allowed Material for the exam

Regulations

Old Exams