Parallel Numerics - Winter 13

From Sccswiki
Revision as of 17:51, 14 November 2013 by Liebm (talk | contribs) (Klausurtermin hinzugefuegt)
Jump to navigation Jump to search
Winter 13
Univ.-Prof. Dr. Thomas Huckle
Time and Place
Tuesday, 09:15-10:45, Room 02.07.023
CSE (compulsory course, 3rd semester), Mathematics (Master), Informatics (Master) (Modul IN2012)
Friday, 10:15-11:45, Room 02.07.023, Organization: Michael Lieb
Do 20.2.14, 12:00-13:30, 5503.EG.350 (MW 0350, Egbert-von-Hoyer-Hörsaal)
Semesterwochenstunden / ECTS Credits
SWS (2V + 2Ü) / 5 Credits

This course will be given in every winter term. The lectures and tutorials are conducted in English, and the course substitutes the German lecture "Numerik auf Parallelrechnern".


14.11.2013 The tutorial on 15.11.2013 will take place.


  1. High-Performance Computing
  2. Performance: Analysis, Modeling, and Measurements
  3. Basic Linear Algebra Subprograms
  4. Direct Solution of Sparse Linear Systems
  5. Iterative Methods for Linear Systems
  6. Linear Eigenvalue Problems
  7. Programming in MPI

Course Material

Lecture Notes



Tutorial Topics Worksheet Proposal for solution / code Additional (Slides)
1 Flynn's Taxonomy & MPI Basics sheet1.pdf sheet1_solution.pdf
2 Numerical Integration & P2P Communication I sheet2.pdf
3 Vector-Vector Operations & P2P Communication II sheet3.pdf
4 Matrix-Matrix-Operations & P2P Communication III sheet4.pdf
5 Parallel Gaussian elimination & Collective Operations sheet5.pdf
6 Tridiagonal Matrices, Hockney/Golub method & Message Tags sheet6.pdf
7 Sparse Matrix-Vector Multiplication & MPI Communicators sheet7.pdf
8 Stationary Methods sheet8.pdf
9 Gradient Methods, Preconditioning & Eigenvalues sheet9.pdf
10 Domain Decomposition sheet10.pdf

Literature & External Links

  1. Introduction to High Performance Scientific Computing (Eijkhout, Chow, van de Geijn) [free download]
  2. Numerical Linear Algebra for High-Performance Computers (Dongarra, Duff, Sorensen, van der Vorst)
  3. Parallel Algorithms for Matrix Computations (Gallivan, Heath, Ng, Ortega,...)
  4. A User's Guide to MPI (Pacheco)
  5. Iterative Methods for Sparse Linear Systems (Saad)
  6. Loesung linearer Gleichungssysteme auf Parallelrechnern (Frommer)
  7. An Introduction To Quantum Computing for Non-Physicists


Allowed Material for the exam


Old Exams