Parallel Numerics - Winter 16
Jump to navigation
Jump to search
- Term
- Winter 2016
- Lecturer
- Univ.-Prof. Dr. Thomas Huckle
- Time and Place
- Lecture: Tuesday (first lecture: 18.10.2016), 12:15 - 13:45, MI 00.13.009A
- Tutorial: Friday (first tutorial: 28.10.2016), 10:15 - 11:45, MI 00.13.009A, see Tutorials
- Audience
- IN2012
- Master CSE
- Master Mathematics
- Master Informatics
- Master Mathematics in Data Science
- Master Data Engineering and Analytics
- Tutorials
- Benjamin Uekermann
- Exam
- Semesterwochenstunden / ECTS Credits
- 4 SWS (2V + 2Ü) / 5 credits
- TUMonline
Contents
News
23.09.2016 | First lecture takes place on 18.10.2016, first tutorial on 28.10.2016. There will be no tutorial on 23.12.2016 . |
---|
Reexam Review 18.5.2017, 10:30-11:30 in room 02.05.037 . |
---|
Lecture slides
Number | Date | Slides |
1 | 18.10.2016 | lecture_1.pdf |
2 | 25.10.2016 | lecture_2.pdf |
3 | 08.11.2016 | lecture_3.pdf |
4 | 15.11.2016 | lecture_4.pdf |
5 | 22.11.2016 | lecture_5.pdf |
6 | 29.11.2016 | lecture_6.pdf |
7 | 06.12.2016 | lecture_7.pdf |
8 | 13.12.2016 | lecture_8.pdf |
9 | 20.12.2016 | lecture_9.pdf |
10 | 10.01.2017 | lecture_10.pdf |
11 | 17.01.2017 | lecture_11.pdf |
12 | 24.01.2017 | lecture_12.pdf |
13 | 31.01.2017 | lecture_13.pdf |
Tutorials
Number | Date | Topic | Worksheet | Proposal for solution | Code |
1 | 28.10.2016 | Flynn's Taxonomy & MPI Basics | description01.pdf | solution01.pdf | sheet01_task05.cpp sheet01_task06.cpp |
2 | 04.11.2016 | Numerical Integration & P2P Communication I | description02.pdf | solution02.pdf | sheet02_task01.cpp |
3 | 11.11.2016 | Vector-Vector Operations & P2P Communication II | description03.pdf | solution03.pdf | sheet03_task05.cpp |
4 | 18.11.2016 | Matrix-Matrix-Operations & P2P Communication III | description04.pdf | solution04.pdf | sheet04_task05.cpp slides04.pdf |
5 | 25.11.2016 | Parallel LU Decomposition & Collective Operations | description05.pdf | solution05.pdf | sheet05_task03.cpp |
6 | 02.12.2016 | Tridiagonal Matrices, Hockney/Golub method & Message Tags | description06.pdf | solution06.pdf | sheet06_task01_serial.cpp sheet06_task01_parallel.cpp sheet06_task03.cpp slides6.pdf |
7 | 09.12.2016 | Sparse Matrix-Vector Multiplication & MPI Communicators | description07.pdf | solution07.pdf | sheet07_task03.cpp |
8 | 16.12.2016 | Stationary Methods | description08.pdf | solution08.pdf | sheet08_task03_serial.cpp |
9 | 13.01.2017 | Domain Decomposition | description09.pdf | solution09.pdf | slides_RB.pdf |
10 | 20.01.2017 | Gradient Methods, Preconditioning & Eigenvalues | description10.pdf | solution10.pdf | sheet10_task01_serial.c |
11 | 27.01.2017 | SPAI and old exams | description11.pdf | solution11.pdf |
Exam
Regular Exam
The regular exam takes place in room 101 (Interims Hörsaal 1), Boltzmannstr. 5 on Friday, February 17, 2017 from 10:30 to 12:00.
The exam review for the regular exam takes place at the chair (room 02.05.037), on Thursday, March 9, 2017 from 15:00 to 17:00.
Repeat Exam
The repeat exam takes place in room PH 2502, James-Franck-Str. 1 on Wednesday, April 12, 2017 from 16:00 to 17:30.
The exam review for the repeat exam takes place at the chair (room 02.05.037), on Thursday, May 18, 2017 from 10:30 to 11:30.
Allowed material for exam
- 1 two-sided hand-written sheet of paper
- Message Passing Interface Quick Reference in C
Old exams
Semester | Exam | Solution |
Winter term 2010/11 | exam | solution |
Winter term 2009/10 | exam | solution |
Winter term 2008/09 | exam | partial solution |
Winter term 2007/08 | exam | - |
Winter term 2006/07 | exam | - |
Winter term 2005/06 | exam | - |
Literature & external links
- Eijkhout, Chow, van de Geijn: Introduction to High Performance Scientific Computing
- Dongarra, Duff, Sorensen, van der Vorst: Numerical Linear Algebra for High-Performance Computers
- Gallivan, Heath, Ng, Ortega: Parallel Algorithms for Matrix Computations
- Pacheco: A User's Guide to MPI
- Saad: Iterative Methods for Sparse Linear Systems
- Frommer: Lösung linearer Gleichungssysteme auf Parallelrechnern
- An Introduction To Quantum Computing for Non-Physicists