Continuous Models 2: PDE

- > so far: only time as independent variable
- > ODE-based population models sometimes too coarse:
 - population in the USA during California gold rush in the 1850s
 - predictions of the UN concerning world population (industrialized countries versus third world)
- \triangleright therefore: suppose p(x,t) or p(x,y,t) instead of p(t)
 - · California gold rush: 1D sufficient (east-west)
 - · world population: perhaps 1D (north-south), perhaps 2D
- > taking space into account makes models
 - more accurate (spatial effects are no longer neglected)
 - more complicated (analytical solution becomes harder, numerical solution means a lot of additional work)
- > standard example: heat conduction

Introduction to Scientific Computing Lesson 5: Continuous Models (PDE)

Slide 1

Modelling with PDE

- taking space into account is typical for many problems or phenomena from physics or continuum mechanics:
 - fluid mechanics: where will we get a tornado?
 - · structural mechanics: where will be the crack?
 - process engineering: where is it how hot in the reactor?
 - · electromagnetism: where is which electron density?
 - · geology: where will the earthquake happen?
- > more independent variables entail *partial* derivatives
- > we distinguish:
 - stationary problems: no time-dependence
 - unsteady problems: time-dependence (perhaps, but not necessarily, with a stationary limit for increasing time)

Introduction to Scientific Computing Lesson 5: Continuous Models (PDE)

Heat Conduction

- central problem of thermodynamics
- let heat affect an object's boundary propagation?
 - · a wire, heated at one end
 - · a metal plate, heated at one side
 - · water cooling the reactor in a nuclear power plant
 - · a room in winter: where to place the heating
 - · a room in summer: effect of direct sunshine
 - boiling water in a pot on a ceramic hob
- central function of interest: temperature T

$$T(x;t)$$
 or $T(x, y;t)$ or $T(x, y, z;t)$

> The values of T will depend on the material and its heat conductivity.

Introduction to Scientific Computing Lesson 5: Continuous Models (PDE)

Slide 3

Modelling Heat Conduction 1

> part 1 of the model: the PDE, indicating the relations of changes of T with respect to time and space (3D):

$$\begin{split} \kappa \cdot \left(T_{_{xx}} + T_{_{yy}} + T_{_{zz}}\right) &= \kappa \cdot \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2}\right) = \frac{\partial T}{\partial t} = T_t \\ \text{or shortly } \kappa \cdot \Delta T = T_t \quad \text{with the Laplace operator } \Delta \end{split}$$

- > short derivation (excursion to physics):
 - starting point is the basic principle of energy conservation
 - changes of heat in some part D of our domain are due to flux in/out D's surface and to external sources and drains in D

$$\frac{\partial}{\partial t} \int_{D} \rho \ c T \mathrm{d}V = \int_{D} q \ \mathrm{d}V + \int_{\partial D} k \nabla T \cdot \vec{\mathbf{n}} \ \mathrm{d}S$$
• density ρ , specific heat c, external term q, heat conductivity

k, outer normal vector, n volume/surface element dV/dS

Introduction to Scientific Computing Lesson 5: Continuous Models (PDE)

Modelling Heat Conduction 2

- derivation of the heat equation (continued):
 - · transform the above equation according to Gauß' theorem:

$$\int_{D} (\rho \, cT_{t} - q - k \, \Delta T) \, \mathrm{d} \, V = 0$$

 This holds for an arbitrary part D of our domain. Hence, the integrand must vanish:

 $T_t = \kappa \Delta T + \frac{q}{\rho c}, \quad \kappa = \frac{k}{\rho c}$

- $\kappa > 0$ is called the *thermal diffusion coefficient* (since the Laplace operator stands for a (heat) diffusion process)
- For vanishing external influence q=0, we get (and, thus, have derived) the famous heat equation:

$$T_{t} = \kappa \Delta T$$

Introduction to Scientific Computing Lesson 5: Continuous Models (PDE)

Slide 5

Modelling Heat Conduction 3

- part 2 of the model: the PDE needs boundary or initial-boundary conditions to provide a unique solution:
 - Dirichlet boundary conditions: fix T on (part of) the boundary $T(x,y,z) = \varphi(x,y,z)$
 - Neumann boundary conditions: fix T's normal derivative on (part of) the boundary: $\frac{\partial T}{\partial \mathbf{n}}(x,y,z) = \boldsymbol{\varphi}\left(x,y,z\right)$
 - pure Dirichlet and mixtures are allowed, pure Neumann b.c. do not lead to a unique solution (with T solves T+constant the PDE, too)
 - in case of time-dependence: initial conditions for t=0
- in case of no time-dependence: Laplace equation

Introduction to Scientific Computing Lesson 5: Continuous Models (PDE)

Modelling Heat Conduction 4

- meaning of boundary conditions:
 - **Dirichlet**: the temperature T is prescribed itself along (part of) the boundary (some defined heating or cooling)
 - Neumann: the temperature flux through (part of) the boundary is prescribed (if vanishing: complete isolation, no orthogonal transport of heat into or out of the domain
- > analytical solutions:
 - In simple (1D) configurations, solutions can be given explicitly via separation of variables (Fourier's method). We will discuss these in the exercises.
 - The heat equation is a simple case of a PDE, where general statements concerning existence and uniqueness of solutions are possible. Often, such theorems can not be proven.

Introduction to Scientific Computing Lesson 5: Continuous Models (PDE)

Slide 7

Types of PDE

> The heat equation is a *linear PDE of second order:*

$$\sum_{i,j=1}^{d} a_{i,j}(\vec{x}) \cdot u_{x_i,x_j}(\vec{x}) + \sum_{i=1}^{d} a_i(\vec{x}) \cdot u_{x_i}(\vec{x}) + a(\vec{x}) \cdot u(\vec{x}) = f(\vec{x})$$

- > three types are distinguished:
 - elliptic PDE: the matrix A of the $a_{i,j}$ is pos. or neg. definite
 - parabolic PDE: one eigenvalue of A is zero, the others have the same sign, and the rank of A together with the vector of the a_i is full (d)
 - hyperbolic PDE: A has 1 pos. and d-1 neg. eigenvalues or vv.
- > examples:
 - elliptic: Laplace equation $\Delta u = 0$
 - parabolic: heat equation $\Delta u = u$.
 - hyperbolic: wave equation $\Delta u = u_{tt}$

Introduction to Scientific Computing Lesson 5: Continuous Models (PDE)

