» therefore: suppose p(x,t) or p(x,y,t) instead of p(t)
» California gold rush: 1D sufficient (east-west)
» world population: perhaps 1D (north-south), perhaps 2D
» taking space into account makes models
* more accurate (spatial effects are no longer neglected)

* more complicated (analytical solution becomes harder,
numerical solution means a lot of additional work)

» standard example: heat conduction
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» process engineering: where is it how hot in the reactor?
» electromagnetism: where is which electron density?
» geology: where will the earthquake happen?

» more independent variables entail partial derivatives
» we distinguish:
* Stlationary problems: no time-dependence

» unsteady problems: time-dependence (perhaps, but not
necessarily, with a stationary limit for increasing time)
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» aroom in winter: where to place the heating
» aroom in summer: effect of direct sunshine
» boiling water in a pot on a ceramic hob
» central function of interest: temperature T
T(xt) or T(x,y;t) or T(x,Y,zt)
» The values of T will depend on the material and its
heat conductivity.
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» short derivation (excursion to physics):
« starting point is the basic principle of energy conservation
* changes of heat in some part D of our domain are due to flux
infout D's surface and to external sources and drains in D

1!’chdV 1!’qu+J’kDTEFf|dS

+ density P, speC|f|c heat c, external term q, heat conductivity
k, outer normal vector, n volume/surface element dV/dS
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integrand must vanish: q K
T =kAT+——, K=—
pC pC
« K >0 is called the thermal diffusion coefficient (since the
Laplace operator stands for a (heat) diffusion process)

» For vanishing external influence =0, we get (and, thus,
have derived) the famous heat equation:

T, =k AT
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* Neumann boundary conditions: fix T‘s normal derivative on
(part of) the boundary: oT _
S (%= (xv.2)

» pure Dirichlet and mixtures are allowed, pure Neumann b.c.
do not lead to a unique solution (with T solves T+constant
the PDE, too)

» in case of time-dependence: initial conditions for t=0
» in case of no time-dependence: Laplace equation
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orthogonal transport of heat into or out of the domain

» analytical solutions:

* In simple (1D) configurations, solutions can be given
explicitly via separation of variables (Fouriers method). We
will discuss these in the exercises.

» The heat equation is a simple case of a PDE, where general
statements concerning existence and uniqueness of
solutions are possible. Often, such theorems can not be
proven.
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« parabolic PDE: one eigenvalue of A is zero, the others have
the same sign, and the rank of A together with the vector of
the a is full (d)

» hyperbolic PDE: A has 1 pos. and d-1 neg. eigenvalues or
VV.

» examples:

+ elliptic: Laplace equation Au=0

+ parabolic: heat equation AU = u,

* hyperbolic: wave equation Ay = U,
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