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Convolution

Definition

The convolution of two functions (signals) f and k is

g(x) =

∫

R

k(x − s)f (s)ds

In the applications usually f is the original signal, k is the convolution kernel
and g is the observed signal.

Example
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Shift-invariant: every point is subject to the same phenomenon.
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Discretization

Assumption

f (x) = 0 for x /∈ [a, b].

The convolution becomes

g(x) =

∫ b

a

k(x − s)f (s)ds

Discretize the integral using n rectangles defining the grid points

xj = a + jh, h =
b − a

n
, j = 0, . . . , n − 1.

Approximate g at the grid points xi , for i = 0, . . . , n − 1, by

g(xi ) =

∫ b

a

k(xi − s)f (s)ds

≈ h
n−1
∑

j=0

k(xi − xj )f (xj )
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Linear system

Defining
Ki,j = hk(xi − xj ) = hk ((i − j)h)

we have that

g(xi ) ≈

n−1
∑

j=0

Ki,j f (xj ), i = 0, . . . , n − 1,

which is the linear system
g = K f, (1)

where gi = g(xi ) and fi = f (xi ), for i = 0, . . . , n − 1.

Note that
ki−j := hk ((i − j)h) = Ki,j (2)

shift-invariant property.
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Toeplitz matrix

Thanks to (2), the matrix

K =













k0 k−1 . . . k−(n−1)

k1 k0
. . .

...
...

. . .
. . . k−1

kn−1 . . . k1 k0













(3)

has constant elements along the diagonals and it is called Toeplitz matrix.

The matrix K depends on only 2n − 1 parameters

k = [k−n+1, . . . , k−1, k0, k1, . . . , kn−1]
T .

How to work with K

Memorize only k ∈ R
2n−1.

Is it possible to save CPU time for the computations (matrix-vector
product, inversion, etc.)?



Structured
Matrices,
Multigrid,
and Image
Processing

M.
Donatelli

Convolution
and
Structured
Matrices

Convolution

Discrete
Fourier
Transform

Applications
and gene-
ralization

2D Case

Symbol
and matrix
sequences

Discrete Convolution

Let f = ei the i-th vector of the canonical base, then

g = Kei = [. . . , k−1, k0, k1, . . . ]
T ,

hence, if ki = 0 for |i | > n/2 then k can be obtained observing a point in
the middle of the interval . . . next lesson on inverse problems.

The linear system (1) is the discrete convolution with zero-Dirichlets
boundary conditions

gi =

n−1
∑

j=0

Ki,j fj =

n−1
∑

j=0

ki−j fj , i = 0, . . . , n − 1

Rotate the vector k, shift, multiply component wise with f and then sum:

gj =

∑
kn−1 · · · k1 k0 k−1 · · · k−n+1

∗ · · · ∗ ∗ ∗ · · · ∗

f̃j−(n−1) · · · f̃j−1 f̃j f̃j+1 · · · f̃j+n−1

= kn−1 · f̃j−n+1) + · · ·+ k1 · f̃j−1 + k0 · f̃j + k−1 · f̃j+1 + · · ·+ k−n+1 · f̃j+n−1

where

f̃i =

{

fi if i = 0, 1, · · · , n − 1,

0 otherwise.



Structured
Matrices,
Multigrid,
and Image
Processing

M.
Donatelli

Convolution
and
Structured
Matrices

Convolution

Discrete
Fourier
Transform

Applications
and gene-
ralization

2D Case

Symbol
and matrix
sequences

Full Convolution

Let ki = 0 for |i | > m, m < n − 1, then removing Assumption 1 we have
the full discrete convolution

g = Kfull f̃

=





















km . . . k1 k0 k−1 . . . k−m 0

km . . . k1 k0 k−1 . . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . . . . . k1 k0 k−1 . . . k−m

0 km . . . k1 k0 k−1 . . . k−m





















f̃

where f̃ =
[

f−m . . . f−1 | f
T | fn, . . . , fn+m−1

]T
∈ R

n+2m.

No assumptions on the boundary conditions

gi =
∑

j∈Z

ki−j fj , i = 0, . . . , n − 1
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Circulant matrix

Assumption

Assume that the function f is periodic with period b − a. Then

f−i = fn−i , fn+i−1 = fi−1, i = 1, 2, . . . ,m.

Let m < n/2, i.e., supp(k) ⊂ [a, b] as in the example, then

g = Kfull f̃ = Kcircf

where

Kcirc =



































k0 . . . k−m 0 km . . . k1
...

. . .
. . .

. . .
. . .

. . .
...

km
. . .

. . .
. . .

. . .
. . . km

0
. . .

. . .
. . .

. . .
. . . 0

k−m

. . .
. . .

. . .
. . .

. . . k−m

...
. . .

. . .
. . .

. . .
. . .

...

k−1 . . . k−m 0 km . . . k0
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Circulant matrix 2

The matrix Kcirc depends on only n parameters in the first column

k =
[

k0, . . . , km,0, k−m, . . . , k−1

]T

∈ R
n

Given the observation of e n+1
2

(n odd for simplicity)

k̆ =
[

0, k−m, . . . k−1, k0, k1, . . . , km,0
]T

∈ R
n

we have that
k = circshift(k̆, n− i0),

where k̆i0 = k0 (indices start from zero).
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Circular discrete convolution

Using the congruence relation index k in the standard way

k =



























k0
...
km

0
k−m

...
k−1



























mod n
−−−→















k0
k1
...

kn−2

kn−1















Circular discrete convolution

g = Kcircf = f ∗ k (4)

where

gi =
n−1
∑

j=0

k(i−j)mod nfj , i = 0, . . . , n − 1
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Discrete Fourier Transform

Definition

Let f ∈ C
n the Discrete Fourier Transform (DFT) of f is

f̂k :=

n−1
∑

j=0

fje
−

i2πjk
n , k = 0, . . . , n − 1.

To simplify the notation define

ωn := e
−

i2π
n

(note that ωk
n is the k-th root of the unity, for k = 0, . . . , n − 1), thus

f̂k :=
n−1
∑

j=0

ωjk
n fj , k = 0, . . . , n − 1.

In matrix form
f̂ = Fnf,

where [Fn]k,j = ωjk
n , for k , j = 0, . . . , n − 1.
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Properties of the DFT

Proposition

n−1
∑

j=0

ωjk
n =

{

n if k = sn, s ∈ Z,
0 otherwise.

Properties of Fn

1 Fn = FT
n .

2 F−1
n = 1

n
FH
n .

3 FH
n = J Fn = FnJ where J is the permutation matrix

J =









1

1
. .
.

1









Corollary

F−1
n =

1

n
JFn (5)
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Fast Fourier Transform (FFT)

Remark

Thanks to (5), F−1
n x can be computed using the same algorithm implemented

for the direct product Fnx.

Fast Fourier Transform (FFT)

The matrix-vector requires O(n2) arithmetic operations but when the
matrix is Fn it can be computed in O(n log(n)) by FFT for n = 2α.

FFT was included in the Top 10 Algorithms of 20th Century.

Different algorithms (decimation in time or decimation in space) can be
used and several implementation details can be found in
C. Van Loan, ‘‘Computational Frameworks for the Fast Fourier

Transform’’, Frontiers in Applied Mathematics, SIAM, 1992.
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Convolution Theorem

Theorem

Let f, k ∈ C
n, then

Fn(f ∗ k) = (Fnf) ◦ (Fnk),

where ∗ is defined in (4) and ◦ is the Hadamard (entrywise) product.

Spectral decomposition of Kcirc

From the previous theorem and Property 2, it holds

Kcircf = f ∗ k =
1

n
FH
n (Fnf ◦ Fnk) =

1

n
FH
n diag(Fnk)Fnf (6)

Since (6) has to hold for all f ∈ C
n, it must be

Kcirc =
1

n
FH
n diag(Fnk)Fn (7)
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Toeplitz matrices vs circulants

Goal: compute the product Kx with K Toeplitz matrix in (3).

Construct the circulant matrix

C =

[

K M1

M2 M3

]

∈ C
m×m

with m ≥ 2n − 1 and y =

[

x

0

]

.

Compute z = Cy, thus

Kx =







z1
...
zn







Choosing m as the smallest power of 2 such that m ≥ 2n − 1, pad with
zeros if necessary, we can use FFT with a cost of O(n log n).
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FFT of arbitrary size

The matrix-vector product of Toeplitz matrices of arbitrary size n can be
computed by immersion into a circulant of size m = 2α and then applying
the FFT.

How compute FFT of arbitrary size? By Toeplitz matrices!

Use the relation −jk = ((k − j)2 − k2 − j2)/2.

It holds

Fn =
[

e
−

i2πjk
n

]n−1

j,k=0
=

[

e
iπ(((k−j)2−k2−j2))

n

]n−1

j,k=0

= DTD

where

D = diagk=0,...,n−1

(

e
−

iπk2

n

)

, T =

[

e
iπ(k−j)2

n

]n−1

k,j=0

.
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2D Convolution

Definition

The convolution of two functions (signals) f and k is

g(x1, x2) =

∫ b1

a1

∫ b2

a2

k(x1 − s1, x2 − s2)f (s1, s2)ds1ds2

Example

f k g
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Discretization

Discretize on a uniform grid on [a1, b1]× [a2, b2].

Resizing n ×m images in vectors of length nm concatenating the
columns, we obtain the linear system

g = K f

where K is the block-Toeplitz-Toeplitz-block (BTTB) matrix

K =













K0 K−1 . . . K−(n−1)

K1 K0

. . .
...

...
. . .

. . . K−1

Kn−1 . . . K1 K0













,

Kj =













kj,0 kj,−1 . . . kj,−m+1

kj,1 kj,0
. . .

...
...

. . .
. . . kj,−1

kj,m−1 . . . kj,1 kj,0













, kj,s = hxhyk(jhx , shj ).
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2D DFT

Circulant matrices have a similar block circulant circulant block (BCCB)
structure.

2D DFT by tensor product

F 2D
n = Fn ⊗ Fn.

Since (A⊗ B)vec(X ) = vec(BXAT ) it holds

F 2D
n vec(X ) = vec(FnXFn),

which is the application of the 1D DFT to each row and column of X.
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Linear Algebra approach for circulant matrices

Exercise: Prove that the set of circulant matrices

Cn =
{

A ∈ C
n×n : A = FH

n DFn with D diagonal matrix
}

is closed for sum, product and inversion (Hint: Caley-Hamilton theorem).

Denote by Circ(a) the circulant matrix defined by a, e.g., Circ(k) = Kcirc ,
namely

Circ(a) =













a0 an−1 . . . a1

a1 a0
. . .

...
...

. . .
. . . an−1

an−1 . . . a1 a0













= pn−1(Z ) ∈ Pn−1, (8)

where

pn−1(x) =

n−1
∑

j=0

ajx
j and Z :=











1

1
. . .

1











.
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Spectral decomposition of Circulant matrices

Define y ∈ R
n by uniform sampling in [0, 2π]:

ys =
2πs

n
, s = 0, . . . , n − 1.

The spectral decomposition of Z is

Z = FnΛF
−1
n , Λ = diag(eiy) (9)

Combining (9) with (8), the spectral decomposition of Circ(a) is

Circ(a) =
1

n
Fndiag(F

H
n a)FH

n (10)

1 the eigenvectors are the column of Fn, i.e, e−ijy the j-th frequency.
2 the eigenvalues of Circ(a) are

λj = [FH
n a]j =

n−1∑

s=0

ase
ijys , j = 0, . . . , n − 1.

Which is the difference between (10) and (7)?
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Symbol of band Circulant matrices

For our convolution matrix Kcirc = Circ(k) it holds

λj =
n−1
∑

s=0

kse
i2πjs
n =

m
∑

s=0

kse
i2πjs

n +
−1
∑

s=−m

kse
i2πjs

n

=
m
∑

s=−m

kse
i2πjs

n = Sm[k](yj ), j = 0, . . . , n − 1.

which is the m-th partial sum of the Fourier series of the function k assuming
that k ∈ L1

[0,2π] is 2π-periodic and its Fourier coefficients are

kj =
1

2π

∫ 2π

0

k(x)e−ijx
dx , j ∈ Z, k(x) =

∑

j∈Z

kje
ijx .

Remark

We can construct a sequence of circulant matrices associated to k with
increasing size 2m + 1 using Sm[k](x).
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The operator of Toeplitz matrices

Definition

Given a function f : [0, 2π] → C, 2π-periodic, f ∈ L1
[0,2π] and with Fourier

coefficients

aj =
1

2π

∫ 2π

0

f (x)e−ijx
dx , j ∈ Z,

the associated Toeplitz matrix of order n is Tn = Tn(f ) = [ai−j ]
n−1
i,j=0, namely

Tn =













a0 a−1 . . . a−(n−1)

a1 a0
. . .

...
...

. . .
. . . a−1

an−1 . . . a1 a0













Example
{

u′′(x) = g(x) x ∈ (0, 1)
u(0) = u(1) = 0

Finite differences discretization of
order 2 ⇒ f (x) = 2− 2 cos(x)
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Property of Tn(f )

Definition

Tn(·) : L
1
[0,2π] → C

n×n

Lemma

1 Tn(αf + βg) = αTn(f ) + βTn(g)

2 f real =⇒ Tn(f ) is a Hermitian matrix,

3 f ≥ 0 =⇒ Tn(f ) is positive semidefinite,

4 f ≥ 0 and sup f > 0 =⇒ Tn(f ) is positive definite.

Lemma

Let f be real such that mf ≤ f ≤ Mf with mf 6= Mf , then
σ(Tn(f )) ⊂ (mf ,Mf ).
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Eigenvalues distribution

Definition

Let f : [0, 2π] → C be L1
[0,2π]. Let {An} be a sequence of matrices of size n

with eigenvalues λj(An), j = 1, . . . , n.
{An} is distributed as the pair (f , [0, 2π]) in the sense of the eigenvalues:

{An} ∼λ (f , [0, 2π]),

if for all continuous functions F

lim
n→∞

1

n

n
∑

j=1

F (λj(An)) =
1

2π

∫ 2π

0

F (f (t))dt.

Theorem

Let f be a real and 2π-periodic function. Then

{Tn(f )} ∼λ (f , [0, 2π]), if f is continuous,

{Cn(f )} ∼λ (f , [0, 2π]), if f is Lipschitz.
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Inverse Problems

Inverse problems

From the observation of a phenomenon we would obtain its birth.

Example

A classical example is the Fredholm integral equation of the first kind

g(x) =

∫

R

k(x , s)f (s)ds (1)

Discrete example
Ax = y

- The matrix-vector product is the direct problem.
- The solution of the linear system, i.e., x = A−1y is the inverse problem.

Remark

Continuous inverse problems are often ill-posed.
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Ill-posed Problems

A good book: H.W. Engl, M. Hanke, A. Neubauer, ‘‘Regularization

of Inverse Problems’’, Kluwer Academic Publishers, 1996.

Definition

We say that a mathematical problem is well-posed if

1 a solution exists;

2 the solution is unique;

3 the solution depends continuously on the data.

We say that a mathematical problem is ill-posed if one of the conditions above
does not hold.

The Riemann-Lebesgue lemma states that the integral will approach zero
as the number of oscillations increases ⇒ (1) is ill-posed.

The discretization of an ill-posed problem is severely ill-conditioned ⇒
discrete ill-posed problems, see
P. C. Hansen, ‘‘Rank-Deficient and Discrete Ill-Posed

Problems: Numerical Aspects of Linear Inversion’’,

Mathematical Modeling and Computation, SIAM, 1998.
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Discrete least squares

Given A ∈ C
m×n and b ∈ C

m, instead of to solve Ax = b compute

argmin
x∈Cn

‖Ax− b‖22. (2)

Definition

Let A ∈ C
m×n, then exist U and V unitary matrices such that the singular

values decomposition (SVD) of A is

A = UΣV H ,

with Σ = diagi=1,...,t(σi) ∈ R
m×n, t = min(m, n) and σ1 ≥ σ2 ≥ σt ≥ 0.

Let r = rank(A), then

A = UΣV H = UrΣrV
H
r =

r
∑

i=1

σiuiv
H
i .

The minimum solution of (2) is

x
† = A

†
b.
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Numerical rank

Definition

The condition number of a matrix is

ν2(A) = ‖A‖2‖A
†‖2 =

σ1

σr

.

If σr ≈ 0 then ν2(A) >> 1 and it may be that in exact arithmetic σr = 0.

Definition

Given a matrix A, its truncated singular values decomposition of order s ≤ r is

As =
s

∑

i=1

σiuiv
H
i .

Lemma

‖A− As‖2 = min
B ∈ C

m×n

rank(B) = s

‖A− B‖2 = σs+1.
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Sensitivity analysis

The observed object is usually affected by noise:

b
δ = b+ ξ, b = Ax

†,

where δ = ‖ξ‖2 is the noise level.

The computed solution becomes

x̃ = A
†
b
δ = A

†(b+ ξ) = x
† + e,

where

e = A
†
ξ =

r
∑

i=1

ui
Hξ

σi

vi .

If σi << 1 and ui
Hξ 6= 0, then e can be large even if δ is small.
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Regularization

Discrete ill-posed problems

The singular values decays exponentially at zero without a significant gap.

The singular vectors vj and uj are the j-th frequency.

The noise ξ has nonzero components also in the high frequencies.

=⇒ ‖e‖2 >> 1 =⇒

Regularization

Change a little bit the problem obtaining a new nearby problem well-posed.
There is always a parameter which balances:

1 how the new problem is far from the original one (approximation error)

2 how much the new problem is sensible to noise (stability).
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Truncated SVD (TSVD)

Instead of A†bδ take A†

s b
δ, 0 < s < r , as approximation of x†:

x
δ
s = A

†

s b
δ =

s
∑

i=1

ui
Hb

σi

vi +

s
∑

i=1

ui
Hξ

σi

vi

= x
† −

r
∑

i=s+1

ui
Hb

σi

vi +

s
∑

i=1

ui
Hξ

σi

vi

where the first term is the truncation (approximation) error and the
second term is the noise amplification (stability).

s is the regularization parameter.

The computed solution can be written as

x
δ
s = VΦsΣ

†
U

H
b
δ, Φs =

[

Is

0

]

n×n

A different choice of Φs can be applied, but must be a low-pass filter.
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Tikhonov Regularization

Tikhonov method is

argmin
x∈Cn

{

‖Ax− b
δ‖22 + α‖x‖22

}

, (3)

where α balances the data fitting and the noise explosion.

The solution of (3) is equivalent to the linear system

(AH
A+ αI )x = A

H
b
δ,

thus

x = V (ΣTΣ+ αI )−1ΣT
U

H
b
δ

= VΦTikΣ
†
U

H
b
δ

where ΦTik = (ΣTΣ+ αI )−1ΣTΣ = diagi=1,...,t(φi), such that

φi =
σ2
i

σ2
i + α

≈

{

1 i small,
0 i large,

i = 1, . . . , t.
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Iterative regularization methods

The relative error begins to decrease until a certain “optimal” iteration is
reached and then begins to increase because of the presence of noise,
which starts to dominate the restoration process (semi-convergence).

By stopping the iterations when the error is low, we obtain a regularized
approximation of the solution.

Landweber method (gradient descent method for (2))

xk+1 = xk + τAH(bδ − Axk ), (4)

which is convergent if 0 < τ < 2
ρ(AHA)

.

Convergence in the noise free case

Lemma

If x0 = 0 then Landweber method in (4) converges to x† = A†bδ.
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Filter factor of Landweber method

From the proof of the previous Lemma we obtain the filter factors θk,i s.t.

xk = VΦL,kΣ
†
U

H
b
δ, ΦL,k = diagi=1,...,t(θk,i ), θk,i = 1−(1−τσ2

i )
k+1

Fix k , it holds

θk,i =

{

1 i small,
0 i large,

i = 1, . . . , t.

Fix i and let s > k , then it holds

θs,i > θk,i

Landweber methods starts reconstructing the low frequencies and then
passes at the medium and high frequencies.
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Iterated Tikhonov method

Iterated Tikhonov method is obtained refining a given approximation xk
by solving the error equation using Tikhonov method:

xk+1 = xk + (AH
A+ αI )−1

A
H(bδ − Axk). (5)

It is convergent for α > 0 and x → x† whenever x0 = 0.

The iteration (5) can interpreted as a prenditioned Landweber method,
where τ = 1 and the preconditioner is (AHA+ αI )−1.

Further regularization parameter α, which balances the convergence
speed and how much is steep the semiconvergence:

small α =⇒ fast convergence but unstable convergence,
large α slow convergence like Landweber.

(AHA+ αI )−1 could be computationally expensive. Hence it should be
approximated, but what happens at the convergence?
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Estimation of the regularization parameter

Let β be the regularization parameter.

Discrepancy principle, largely used with iterative methods, requires to
know δ. Compute the approximation corresponding to the smallest β that
satisfies the condition

‖Axβ − b
δ‖2 < νδ, ν > 1.

L-curve: Compute xβ for several values of β and plot in log-scale ‖xβ‖2
and ‖Axβ − bδ‖2, then the best value of β is in the corner of the L-shape
curve balancing data fitting and explosion of noise.

Generalized cross-validation (GCV), etc.
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ℓ1regularization

The ℓ2-norm leads to over-smoothed restorations.

In some applications other regularization terms could be useful, like the
ℓ1-norm if the solution is sparse (e.g. images in the wavelets domain).

Let W H be a wavelet or tight-frame synthesis operator (W HW = I ) and
y the frame coefficients such that

x = W
H
y.

Let x be an image, then y is sparse (wavelet coefficients).

The ℓ2 − ℓ1 minimum problem is

argmin
y∈Cn

{

1

2
‖By − b

δ‖22 + α‖y‖1

}

, (6)

where B = AW H .
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Iterative soft-thresholding algorithm (ISTA)

Let the nonlinear soft-thresholding operator Sµ be defined
component-wise as

[Sµ(y)]i = Sµ(yi ),

with Sµ the soft-thresholding function

Sµ(yi ) = sgn(yi )max {|yi | − µ, 0} .

Combining Landweber and soft-thresholding we obtain the ISTA

xk+1 = Sµ(xk + τAH(bδ − Axk )), (7)

which converges to the solution of (6)
I. Daubechies, M. Defrise, and C. De Mol, An iterative

thresholding algorithm for linear inverse problems with a

sparsity constraint, Comm. Pure Appl. Math., 57--11 (2004),

pp. 1413--1457.
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