Case Study: CFD

- fluid mechanics as a prominent discipline of application for numerical simulations:
 - *experimental* fluid mechanics: wind tunnel studies, laser Doppler anemometry, hot wire techniques, ...
 - *theoretical* fluid mechanics: investigations concerning the derivation of turbulence models, e.g.
 - computational fluid mechanics (CFD): numerical simulations
- many fields of application:
 - · aerodynamics: aircraft design, car design, ...
 - · thermodynamics: heating, cooling, ...
 - · process engineering: combustion
 - · material science: crystal growth
 - · astrophysics: accretion disks

Introduction to Scientific Computing Lesson 14: Case Study: CFD

Slide 1

Some Small Part of the World ...

- > fluids and flows:
 - ideal or real fluids
 - ideal: no resistance to tangential forces
 - · compressible or incompressible fluids
 - think of pressing gases and liquids
 - · viscous or inviscid fluids
 - think of the different characteristics of honey and water
 - <u>Newtonian</u> and non-Newtonian fluids
 - the latter may schon some elastic behaviour (e.g. in liquids with particles like blood)
 - *laminar* or *turbulent* flows
 - turbulence: unsteady, 3D, high vorticity, vortices of different scales, high transport of energy between scales
- typically: all require different models

Introduction to Scientific Computing Lesson 14: Case Study: CFD

The Mathematical Model

- starting point: continuum mechanics
 - · basic conservation laws (remember heat conduction in the modelling section): conservation of mass and momentum
 - · with the transport theorem and Newton's second law, we get $\frac{\partial}{\partial t} \rho + \operatorname{div}(\rho \vec{u}) = 0$ continuity equation

$$\frac{\partial}{\partial t} (\rho \vec{u}) + (\vec{u} \cdot \text{grad})(\rho \vec{u}) + (\rho \vec{u}) \text{div} \vec{u} - \rho \vec{g} - \text{div} \sigma = 0 \quad \text{momentum}$$
equation

· above quantities:

Introduction to Scientific Computing Lesson 14: Case Study: CFD

Slide 3

The Mathematical Model 2

- \triangleright What to do with the tensor σ ?
 - · viscous case: not diagonal due to friction forces
 - · Newtonian case: isotrope, Stokes' postulate
 - hence: pressure p and viscosity V appear
- incompressible case: density is constant
- introducing Reynolds number Re (dimensionless, essentially reciprocal of viscosity and some scaling), we finally get the famous Navier-Stokes equations:

$$\frac{\partial}{\partial t}\vec{u} + (\vec{u} \cdot \text{grad})\vec{u} + \text{grad}p = \frac{1}{\text{Re}}\Delta\vec{u} + \vec{g}$$

- two coupled PDE, nonlinear
- · involving velocity and pressure, 1. and 2. spatial derivatives

Introduction to Scientific Computing Lesson 14: Case Study: CFD

The Mathematical Model 3

- > what about boundary conditions?
 - no-slip:
 - The fluid can not penetrate the wall and sticks to it (tangential and normal velocity components are 0).
 - free-slip:
 - The fluid can not penetrate the wall but does not stick to it (the normal velocity component and the tangential component's normal derivative are 0).
 - inflow:
 - Both tangential an normal velocitiy components are prescribed (defined inflow).
 - outflow:
 - Both velocity components do not change in normal direction (free outlet without restrictions).
 - periodic:
 - Same velocity and pressure at inlet and outlet.

Introduction to Scientific Computing Lesson 14: Case Study: CFD

Slide 5

The Numerical Treatment

- discretization scheme: Finite Differences (can be shown to be equivalent to Finite Volumes, here)
 - grid:
 - strictly orthogonal
 - staggered grid
 - · spatial derivatives:
 - Laplacian: standard 5- or 7-point stencil
 - first derivatives: mixture of central differences and upwind
 - derivatives of nonlinear terms: as first derivatives
 - · time discretization:
 - explicit Euler scheme (simple, but stability restrictions)
 - · coupling of equations:
 - Chorin's projection method; leads to a Poisson equation for the pressure
 - · solution of SLE:
 - SOR

Introduction to Scientific Computing Lesson 14: Case Study: CFD

The Implementation

- geometry representation as a flag field (cf. Markerand-Cell)
- input data (boundary conditions) and output data (computed results) as arrays
- > modular C-code
- parallelization:
 - · simple data parallelism, domain decomposition
 - · straightforward MPI-based parallelization
- > target architectures:
 - · (real) parallel computers
 - · clusters (NOW)
- ➤ The rest is (some ⁽²⁾) programming!

Introduction to Scientific Computing Lesson 14: Case Study: CFD

Slide 7

The Visualization

- > techniques: all the stuff discussed before:
 - isosurfaces
 - orthoslices
 - streamlines
 - streaklines
 - · particle tracing
 - •
- finally some examples for visualized flows:

Ein paar NAST-Bildchen!

Introduction to Scientific Computing Lesson 14: Case Study: CFD

Outlook

- ➤ Studying this simulation cycle for CFD as presented very shortly here will be the topic of next semester's practical *Scientific Computing and Visualization*.
- ➤ There, you will develop your own simple simulation code and run your own fluid flow simulations, including some pretty pictures and movies to see what you've done.
- ➤ In addition to that, you will meet again many of the topics discussed in this introductory course during the CSE program in more detail, and related to other topics or applications.
- ➤ For now, that's all ② see you!

Introduction to Scientific Computing Lesson 14: Case Study: CFD

