A software framework for
Equipping Sparse Solvers for the EXa-scale

Jonas Thies* Dominik Ernst† Faisal Shahzad†

A. Alvermann M. Galgon A. Basermann H. Fehske G. Hager B. Lang G. Wellein

* Inst. of Simulation and Software Technology, DLR
† RRZE, Erlangen University
Univ. of Wuppertal
Univ. of Greifswald

project ESSEX

Knowledge for Tomorrow
Software challenges addressed in ESSEX

Exascale challenges:
1. heterogeneous hardware
2. energy efficiency
3. frequent hardware failures

Main tool to address
• (1) and (2): node-level Performance Engineering
• (3) low overhead Checkpoint/Restart

Other practical challenges:
• Portability
• Different communities speak different languages
 • HPC, US/Europe: C, Fortran, C++, C++, C++, ...
 • HPC, Japan: Fortran
 • Data Science:
 Python+backends
 (TensorFlow, PyTorch, ...)
Iterative sparse matrix solvers

<table>
<thead>
<tr>
<th>library</th>
<th>solver</th>
<th>target purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIST</td>
<td>block Jacobi-Davidson QR</td>
<td>10-100 exterior eigenpairs generalized and/or non-Hermitian preconditioning and basis reuse</td>
</tr>
<tr>
<td></td>
<td>linear (Krylov, CGMN)</td>
<td>linear solvers used in BJDQR and BEAST-(C/M)</td>
</tr>
<tr>
<td></td>
<td>block ILU preconditioning</td>
<td></td>
</tr>
<tr>
<td>BEAST</td>
<td>BEAST-C (contour integration, aka FEAST)</td>
<td>many exterior or interior EV, moderate problem size (generally requires sparse direct solver)</td>
</tr>
<tr>
<td></td>
<td>BEAST-M (moment-based, aka Sakurai-Sugiura)</td>
<td>\sim FEAST with reduced #rhs</td>
</tr>
<tr>
<td></td>
<td>BEAST-P (Chebyshev Filter Diagonalization)</td>
<td>for larger problems (mostly sp-MVMs)</td>
</tr>
</tbody>
</table>
Software architecture

complete implementation in PHIST
Software architecture

complete implementation in PHIST
extensible by other libraries
CHART: custom kernels for sparse solvers

Cannot afford to waste $10 - 90\%$ CPU time at the extreme scale.

- **Example**: ‘tall and skinny’ matrix-matrix product

\[
C \leftarrow A^T B, \quad A \in \mathbb{R}^{K \times M}, \quad B \in \mathbb{R}^{K \times N},
\]
\[
K \gg M, N
\]

- typically computed using CUBLAS (DGEMM) on GPUs
- problem: optimized for ‘squirish’ matrices (compute bound case)
- use case: orthogonal projection (‘CGS’): \[
W \leftarrow (I - VV^T)W
\]

Iteration space: $K \times N \times M$ elements to be computed
GHOST: custom kernels for sparse solvers

Cannot afford to waste $10 - 90\%$ CPU time at the extreme scale.

- **Example:** ‘tall and skinny’ matrix-matrix product

\[
C \leftarrow A^T B, \quad A \in \mathbb{R}^{K \times M}, \quad B \in \mathbb{R}^{K \times N}, \quad K \gg M, N
\]

- typically computed using CUBLAS (DGEMM) on GPUs
- problem: optimized for ‘squarish’ matrices (compute bound case)
- use case: orthogonal projection (‘CGS’): \(W \leftarrow (I - V V^T)W \)

Variant 1: parallelize reduction \((K)\) only
GHAST: custom kernels for sparse solvers

Cannot afford to waste 10 – 90% CPU time at the extreme scale.

- **Example**: ‘tall and skinny’ matrix-matrix product

\[
C \leftarrow A^T B, \quad A \in \mathbb{R}^{K \times M}, \quad B \in \mathbb{R}^{K \times N},
\]

\[
K \gg M, N
\]

- typically computed using CUBLAS (DGEMM) on GPUs
- problem: optimized for ‘squirash’ matrices (compute bound case)
- use case: orthogonal projection (‘CGS’): \(W \leftarrow (I - VV^T)W \)

Variant 2: parallelize \(K, N, M \)
GHAST: custom kernels for sparse solvers

Cannot afford to waste 10 – 90% CPU time at the extreme scale.

- **Example**: ‘tall and skinny’ matrix-matrix product

\[C \leftarrow A^T B, \quad A \in \mathbb{R}^{K \times M}, \quad B \in \mathbb{R}^{K \times N}, \quad K \gg M, N \]

- typically computed using CUBLAS (DGEMM) on GPUs
- problem: optimized for ‘squarish’ matrices (compute bound case)
- use case: orthogonal projection (‘CGS’): \(W \leftarrow (I - VV^T)W \)

Variant 3: parallize \(K, M, N \) in \(m \times n \)-tiles
GHAST: custom kernels for sparse solvers

Cannot afford to waste 10 – 90% CPU time at the extreme scale.

- **Example:** ‘tall and skinny’ matrix-matrix product

\[C \leftarrow A^T B, \ A \in \mathbb{R}^{K \times M}, \ B \in \mathbb{R}^{K \times N}, \ K \gg M, N \]

- typically computed using CUBLAS (DGEMM) on GPUs

- problem: optimized for ‘squirish’ matrices (compute bound case)

- use case: orthogonal projection (‘CGS’): \[W \leftarrow (I - VV^T)W \]

![Performance on V100](chart.png)
CRAFT for fault-tolerance in MPI applications

Application-level Checkpoint/Restart:
C++ interface for ALCR with minimal code changes.
Checkpointable data-types: PODs, 1D-, 2D-POD arrays, std::vector<> etc.
Extensible for user-defined data-types.
Checkpoint management (e.g. restart checkpoint version, nested checkpoints, etc.).
Optimizations: node-level CR using the SCR library, asynchronous checkpointing.

Automatic Fault Tolerance (AFT):
“Dynamic Process Recovery”: Simplified interface for ULFM-MPI.
Recovery models: shrinking, non-shrinking (spawn+merge).

```c++
#include <mpi.h>
#include <craft.h>
int main(int argc, char* argv[])
{
    int myrank, iteration = 0, cpFreq = 10;
    MPI_Comm FT_Comm;
    MPI_Comm_dup(MPI_COMM_WORLD, &FT_Comm);
    AFT_BEGIN(FT_Comm, &myrank, argv);
    double data = 0;
    Checkpoint myCP( "myCP", FT_Comm);
    myCP.add("data", &data);
    myCP.add("iteration", &iteration);
    myCP.commit();
    if (myCP.needRestart()) {myCP.read();}
    for (; iteration <= n; iteration++){
        /* Computation—communication */
        myCP.updateAndWrite(iteration, cpFreq);
    }
    ...
    AFT_END();
}
```
CRAFT benchmark: Block Jacobi-Davidson QR

FT Scope: application-level CR on the full Meggie-cluster
Num. of nodes 725, num. of MPI-procs 1450
Global CP-size = 135 GB (28 vectors), num. of CP = 9
Finding a common language for sparse linear algebra: the PHIST interface layer

MPI-like:
- objects available only via ‘handles’ (e.g. phist_Dmvec_ptr)
- implementation left to ‘kernel library’
- key objects: mvec, sdMat, sparseMat
- comm and map (very limited, inspired by Petra object model from Trilinos)

graph-based algorithms (ILU, AMG): use underlying data structures
Multi-lingual interface – C++

```c++
void phist_Dmvec_times_sdMat(double alpha, Dconst_mvec_ptr V,
    Dconst_sdMat_ptr C, double beta, Dmvec_ptr W, int* iflag);
```

(computes \(W \leftarrow \alpha V \cdot C + \beta W \))

... using the auto-generated C++ bindings:

```c++
using PT=phist::types<double>;
using PK=phist::kernels<double>;
PT::mvec_ptr V;
try {
    PK::mvec_create(&V,map,ncols);
    [...]    
    PK::mvec_times_sdMat(-2,V,C, 1,W);
    [...]    
    PK::mvec_delete(V);
} catch (phist::Exception e) {...}
```
Multi-lingual interface – Fortran’03

```c
void phist_Dmvec_times_sdMat(double alpha, Dconst_mvec_ptr V,
   Dconst_sdMat_ptr C, double beta, Dmvec_ptr W, int* iflag);
```

(computes $W \leftarrow \alpha V \cdot C + \beta W$)

... using the auto-generated Fortran 2003 bindings:

```fortran
use phist_kernels_d
TYPE(phist_Dmvec_ptr) V
integer(c_int) :: iflag, ncols
call phist_Dmvec_create(&V,map,ncols,iflag)
[...]  
call phist_Dmvec_times_sdMat(-2,V,C, 1,W,iflag)
[...]  
call phist_Dmvec_delete(V,iflag)
```

(requires manual checking of ’iflag’)
Multi-lingual interface – Python

```c
void phist_Dmvec_times_sdMat(double alpha, Dconst_mvec_ptr V,
    Dconst_sdMat_ptr C, double beta, Dmvec_ptr W, int* iflag);
```

(computes $W \leftarrow \alpha V \cdot C + \beta W$)

... using the auto-generated **Python** bindings:

```python
from phist_kernels import *
V=phist_Dmvec_ptr()
try:
    PYST_CHK_IERR(Dmvec_create,V,map,ncols)
    [...]
    PYST_CHK_IERR(Dmvec_times_sdMat,-2,V,C, 1,W)
    [...]
    PYST_CHK_IERR(Dmvec_delete,V)
except:
    [...]```
Use case: **Python Numerical Continuation Toolkit**

- We seek steady states of some discretized PDE
- $\Rightarrow$ nonlinear system
  
  $$F(x, \lambda) = 0, \quad F : \mathbb{R}^N \rightarrow \mathbb{R}^N$$

- Jacobian $J(x, \lambda) = \frac{\partial F_i(x, \lambda)}{\partial x_j}$
  
  - large
  - sparse
  - non-Hermitian
  - possibly singular

**Numerical methods:**

1. Newton-Raphson
2. Krylov (GMRES)
3. preconditioning
4. bordering/deflation
5. sparse eigensolver (e.g. JDQR)
PyNCT with object-oriented PHIST-wrapper

**Example:** MGS orthogonalization in GMRES

original (NumPy):

```python
for j in range(it+1):
 alpha=ip(V[:,j],w)
 H[j,it]+=alpha
 w=w-alpha*V[:,j]
```

with linalg (NumPy or PHIST):

```python
for j in range(it+1):
 alpha=ip(V.view(0,n,j,j+1),w)
 H[j,it]+=alpha
 Vj=V.view(0,n,j,j+1)
 w.axpby(-alpha,Vj,1)
```
Example: PyNCT for a Turing system

Reaction-Diffusion model for pattern formation in biological systems:

\[
\begin{align*}
\frac{\partial u}{\partial t} &= D \delta \nabla^2 u + \alpha u (1 - r_1 v^2) + v (1 - r_2 u), \\
\frac{\partial v}{\partial t} &= \delta \nabla^2 v + v (\beta + \alpha r_1 u v) + u (\gamma + r_2 v),
\end{align*}
\]

Branch 2, \( n_x = 128 \), solution at \( r_2 = 0.0 \)

Branch 4, \( n_x = 128 \), solution at \( r_2 = 0.5 \)
Comparison: PyNCT/Epetra ⇐⇒ LOCA/Epetra

- Experiment: follow branch 4 for $r_2 = 0 \ldots 1$
- 10 continuation steps
- compare operation counts, run time, scalability...

Caveat: algorithmic details are significantly different
Comparison: PyNCT/Epetra $\iff$ LOCA/Epetra

- Experiment: follow branch 4 for $r_2 = 0 \ldots 1$
- 10 continuation steps
- compare operation counts, run time, scalability...

Caveat: algorithmic details are significantly different

total number of GMRES iterations is similar
Comparison: PyNCT/Epeta ⇐⇒ LOCA/Epeta

- Experiment: follow branch 4 for $r_2 = 0 \ldots 1$
- 10 continuation steps
- compare operation counts, run time, scalability...

Caveat: algorithmic details are significantly different
Comparison: PyNCT/Epetra ⇐⇒ LOCA/Epetra

- Experiment: follow branch 4 for $r_2 = 0 \ldots 1$
- 10 continuation steps
- compare operation counts, run time, scalability...

Caveat: algorithmic details are significantly different

... dot products and Python overhead bad for strong scaling
Comparison: PyNCT/Epetra $\iff$ LOCA/Epetra

- Experiment: follow branch 4 for $r_2 = 0 \ldots 1$
- 10 continuation steps
- compare operation counts, run time, scalability...

Caveat: algorithmic details are significantly different
Summary: status of the ESSEX software

- 3-clause BSD license
- https://bitbucket.org/essex/ [ghost|phist|beast|... craft|matrixcollection]/

**GHOS T**
- **experimental** kernel library
- Intel, NVidia
- S/D/C/Z data types

**BEAST**
- uses PHIST
- e.g. Trilinos for direct solvers

**PHIST**
- available in spack and 🌟 xSDK
- includes own kernels and versions of CRAFT and ScaMaC

**CRAFT:** can use
- SCR
- MPI-ULFM

**ScaMaC:** stand-alone version with various interfaces