xSDK: a Community of Diverse HPC Software Packages

Ulrike Meier Yang

Oct 22, 2019
xSDK Project Members:

- H. Anzt
- Satish Balay
- Cody Balos
- Erin Carson
- Jim Demmel
- Veselin Dobrev
- Jack Dongarra
- Rob Falgout
- Aaron Fisher
- David Gardner
- Mike Heroux
- Nick Higham
- Tzanio Kolev
- D. LeBrun-Grandie
- Sam Knight
- Ruipeng Li
- Sherry Li
- Piotr Luszczek
- Lois Curfman McInnes
- T. Moore
- B. Norris
- Sarah Osborn
- Ben Recht
- Barry Smith
- Keita Teranishi
- Carol Woodward
- Jim Willenbring
- Ulrike Meier Yang
- ...

Logos of institutions:
- Argonne National Laboratory
- Lawrence Livermore National Laboratory
- Oak Ridge National Laboratory
- Sandia National Laboratories
- Berkeley University
- The University of Manchester
- Charles University
- **AMReX**: Ann Almgren, Michele Rosso (LBNL)
- **DTK**: Stuart Slattery, Bruno Turcksin (ORNL)
- **deal.II**: Wolfgang Bangerth (Colorado State University)
- **Ginkgo**: Hartwig Anzt (KIT)
- **hypre**: Ulrike Meier Yang, Sarah Osborn, Rob Falgout (LLNL)
- **libEnsemble**: Stefan Wild (ANL)
- **MAGMA and PLASMA**: Piotr Luszczek (UTK)
- **MFEM**: Aaron Fischer, Tzanio Kolev (LLNL)
- **Omega_h**: Dan Ibanez (SNL)
- **PETSc/TAO**: Satish Balay, Alp Denner, Barry Smith (ANL)
- **preCICE**:
- **PUMI**: Cameron Smith (RPI)
- **SUNDIALS**: Cody Balos, David Gardner, Carol Woodward (LLNL)
- **SuperLU and STRUMPACK**: Sherry Li and Pieter Ghysels (LBNL)
- **TASMANIAN**: Miroslav Stoyanov, Damien Lebrun Grandie (ORNL)
- **Trilinos**: Keita Teranishi, Jim Willenbring, Sam Knight (SNL)
- **PHIST**: Jonas Thies (DLR, German Aerospace Center)
- **SLEPc**: José Roman (Universitat Politècnica de València)
- **Alquimia**: Sergi Mollins (LBNL)
- **PFLOTRAN**: Glenn Hammond (SNL)

and many more...
Outline

- **Motivation**
 - Math libraries and scientific software ecosystems
 - Building community and sustainability
 - xSDK history and goals to fulfill ECP needs

- **About the xSDK (eXtreme-scale Scientific software Development Kit)**
 - xSDK community policies
 - xSDK release process
 - Installing the xSDK
Software libraries facilitate progress in computational science and engineering

- **Software library**: a high-quality, encapsulated, documented, tested, and multiuse software collection that provides functionality commonly needed by application developers
 - Organized for the purpose of being reused by independent (sub)programs
 - User needs to know only
 - Library interface (not internal details)
 - When and how to use library functionality appropriately

- **Key advantages** of software libraries
 - Contain complexity
 - Leverage library developer expertise
 - Reduce application coding effort
 - Encourage sharing of code, ease distribution of code

- **References**:
 - What are Interoperable Software Libraries? Introducing the xSDK
Mutual benefits for users and library developers

User perspective

Focus on primary interests
- Reuse algorithms and data structures developed by experts
- Customize and extend to exploit application-specific knowledge
- Cope with complexity and changes over time

Provider perspective:
Share capabilities
- Broader impact of work
- Improved code quality
- Motivate new research directions
- More efficient, robust, reliable, sustainable software
- Improve developer productivity
- Better science
Individual software libraries are not enough.

- Well-designed libraries provide critical functionality … But alone are not sufficient to address all aspects of next-generation scientific simulation and analysis.

- Applications need to use software packages in combination on ever evolving architectures
Need software ecosystem perspective

Ecosystem: A group of independent but interrelated elements comprising a unified whole

Ecosystems are challenging!

“We often think that when we have completed our study of one we know all about two, because ‘two’ is ‘one and one.’ We forget that we still have to make a study of ‘and.’”

– Sir Arthur Stanley Eddington (1892–1944), British astrophysicist
Difficulties in combined use of independently developed software packages

Challenges:

- Obtaining, configuring, and installing multiple independent software packages is tedious and error prone.
 — Need consistency of compiler (+version, options), 3rd-party packages, etc.
- Namespace conflicts
- Incompatible versioning
- And even more challenges for deeper levels of interoperability

Ref: What are Interoperable Software Libraries? Introducing the xSDK

Levels of package interoperability:

- Interoperability level 1
 - Both packages can be used (side by side) in an application

- Interoperability level 2
 - The libraries can exchange data (or control data) with each other

- Interoperability level 3
 - Each library can call the other library to perform unique computations
Extreme-scale Science Applications

- Domain component interfaces
 - Data mediator interactions.
 - Hierarchical organization.
 - Multiscale/multiphysics coupling.

- Native code & data objects
 - Single use code.
 - Coordinated component use.
 - Application specific.

- Shared data objects
 - Meshes.
 - Matrices, vectors.

- Library interfaces
 - Parameter lists.
 - Interface adapters.
 - Function calls.

- Documentation content
 - Source markup.
 - Embedded examples.

- Testing content
 - Unit tests.
 - Test fixtures.

- Build content
 - Rules.
 - Parameters.

- Extreme-scale Science Applications

- Domain components
 - Reacting flow, etc.
 - Reusable.

- Libraries
 - Solvers, etc.
 - Interoperable.

- Frameworks & tools
 - Doc generators.
 - Test, build framework.

- SW engineering
 - Productivity tools.
 - Models, processes.

Extreme-scale Scientific Software Development Kit (xSDK)
Interoperable Design of Extreme-scale Application Software (IDEAS)

Motivation
Enable increased scientific productivity, realizing the potential of extreme-scale computing, through a new interdisciplinary and agile approach to the scientific software ecosystem.

Objectives
Address confluence of trends in hardware and increasing demands for predictive multiscale, multiphysics simulations.
Respond to trend of continuous refactoring with efficient agile software engineering methodologies and improved software design.

Impact on Applications & Programs
Terrestrial ecosystem use cases tie IDEAS to modeling and simulation goals in two Science Focus Area (SFA) programs and both Next Generation Ecosystem Experiment (NGEE) programs in DOE Biologic and Environmental Research (BER).

Approach
ASCR/Ber partnership ensures delivery of both crosscutting methodologies and metrics with impact on real application and programs.
Interdisciplinary multi-lab team (ANL, LANL, LBNL, LLNL, ORNL, PNNL, SNL)
ASCR Co-Leads: Mike Heroux (SNL) and Lois Curfman McInnes (ANL)
BER Lead: David Moulton (LANL)
Integration and synergistic advances in three communities deliver scientific productivity; outreach establishes a new holistic perspective for the broader scientific community.

IDEAS history
ASCR/BER partnership began in Sept 2014
Program Managers:
- Paul Bayer, David Lesmes (BER)
- Thomas Ndousse-Fetter (ASCR)
First-of-a-kind project: qualitatively new approach based on making productivity and sustainability the explicit and primary principles for guiding our decisions and efforts.
Goals: Create a value-added aggregation of ECP mathematics libraries, to increase the combined usability, standardization and interoperability of these libraries, as needed to support large-scale multiphysics and multiscale problems.

Project Description
- Develop community policies and interoperability layers among xSDK component packages
- Determine xSDK sustainability strategy for ECP
- Work with ECP applications to motivate and test xSDK

Project Scope
- Enable the seamless combined use of diverse, independently developed software packages as needed by ECP applications
 - coordinated use of on-node resources
 - integrated execution
 - coordinated & sustainable documentation, testing, packaging, and deployment
xSDK History: Version 0.1.0: April 2016

Notation: A→B:
A can use B to provide functionality on behalf of A

April 2016
• 4 math libraries
• 1 domain component
• PETSc-based xSDK installer
• 14 mandatory xSDK community policies

xSDK functionality, April 2016
Tested on key machines at ALCF, NERSC, OLCF, also Linux, Mac OS X

xSDK Installer

HDF5
BLAS
More external software

Multiphysics Application C

Application A

Application B

Alquimia

PETSc

hypre

SuperLU

Trilinos

More contributed libraries

Domain components
• Reacting flow, etc.
• Reusable.

Libraries
• Solvers, etc.
• Interoperable.

Frameworks & tools
• Doc generators.
• Test, build framework.

SW engineering
• Productivity tools.
• Models, processes.

Extreme-Scale Scientific Software Development Kit (xSDK)

https://xsdk.info
xSDK History: Version 0.2.0: February 2017

Notation: A \rightarrow B:
A can use B to provide functionality on behalf of A

February 2017
- 4 math libraries
- 2 domain components
- Spack xSDK installer
- 14 mandatory xSDK community policies

xSDK functionality, Feb 2017
Tested on key machines at ALCF, NERSC, OLCF, also Linux, Mac OS X

https://xsdk.info

Extreme-Scale Scientific Software Development Kit (xSDK)

Domain components
- Reacting flow, etc.
- Reusable.

Libraries
- Solvers, etc.
- Interoperable.

Frameworks & tools
- Doc generators.
- Test, build framework.

SW engineering
- Productivity tools.
- Models, processes.

Alquimia
PFLOTRAN
PETSc
hypre
SuperLU
Trilinos

HDF5
BLAS
More external software

More contributed libraries

Multiphysics Application C
Application A
Application B

More domain components

Notation: A \rightarrow B:
A can use B to provide functionality on behalf of A
xSDK History: Version 0.3.0: December 2017

https://xsdk.info

Notation: A → B:
A can use B to provide functionality on behalf of A

Multiphysics Application C
Application A
Application B

xSDK functionality, Dec 2017
Tested on key machines at ALCF, NERSC, OLCF, also Linux, Mac OS X

HDF5
BLAS
More external software

December 2017
- 7 math libraries
- 2 domain components
- Spack xSDK installer
- 16 mandatory xSDK community policies

Extreme-Scale Scientific Software Development Kit (xSDK)

Domain components
- Reacting flow, etc.
- Reusable.

Libraries
- Solvers, etc.
- Interoperable.

Frameworks & tools
- Doc generators.
- Test, build framework.

Software engineering
- Productivity tools.
- Models, processes.

PFLOTRAN
Alquimia

PETSc
SUNDIALS
MAGMA

hype
MFEM

SuperLU
Trilinos

More domain components

More contributed libraries

More contributed libraries

MAGMA
Alquimia
PFLOTRAN

https://xsdk.info

xSDK

Spack

MAGMA
Alquimia
PFLOTRAN

Multiphysics Application C
Application A
Application B

xSDK functionality, Dec 2017
Tested on key machines at ALCF, NERSC, OLCF, also Linux, Mac OS X

HDF5
BLAS
More external software

December 2017
- 7 math libraries
- 2 domain components
- Spack xSDK installer
- 16 mandatory xSDK community policies

Extreme-Scale Scientific Software Development Kit (xSDK)

Domain components
- Reacting flow, etc.
- Reusable.

Libraries
- Solvers, etc.
- Interoperable.

Frameworks & tools
- Doc generators.
- Test, build framework.

Software engineering
- Productivity tools.
- Models, processes.

PFLOTRAN
Alquimia
PFLOTRAN

Multiphysics Application C
Application A
Application B

xSDK functionality, Dec 2017
Tested on key machines at ALCF, NERSC, OLCF, also Linux, Mac OS X

HDF5
BLAS
More external software

December 2017
- 7 math libraries
- 2 domain components
- Spack xSDK installer
- 16 mandatory xSDK community policies

Extreme-Scale Scientific Software Development Kit (xSDK)

Domain components
- Reacting flow, etc.
- Reusable.

Libraries
- Solvers, etc.
- Interoperable.

Frameworks & tools
- Doc generators.
- Test, build framework.

Software engineering
- Productivity tools.
- Models, processes.

PFLOTRAN
Alquimia
PFLOTRAN

Multiphysics Application C
Application A
Application B

xSDK functionality, Dec 2017
Tested on key machines at ALCF, NERSC, OLCF, also Linux, Mac OS X

HDF5
BLAS
More external software

December 2017
- 7 math libraries
- 2 domain components
- Spack xSDK installer
- 16 mandatory xSDK community policies

Extreme-Scale Scientific Software Development Kit (xSDK)

Domain components
- Reacting flow, etc.
- Reusable.

Libraries
- Solvers, etc.
- Interoperable.

Frameworks & tools
- Doc generators.
- Test, build framework.

Software engineering
- Productivity tools.
- Models, processes.

PFLOTRAN
Alquimia
PFLOTRAN

Multiphysics Application C
Application A
Application B

xSDK functionality, Dec 2017
Tested on key machines at ALCF, NERSC, OLCF, also Linux, Mac OS X

HDF5
BLAS
More external software

December 2017
- 7 math libraries
- 2 domain components
- Spack xSDK installer
- 16 mandatory xSDK community policies

Extreme-Scale Scientific Software Development Kit (xSDK)

Domain components
- Reacting flow, etc.
- Reusable.

Libraries
- Solvers, etc.
- Interoperable.

Frameworks & tools
- Doc generators.
- Test, build framework.

Software engineering
- Productivity tools.
- Models, processes.

PFLOTRAN
Alquimia
PFLOTRAN

Multiphysics Application C
Application A
Application B

xSDK functionality, Dec 2017
Tested on key machines at ALCF, NERSC, OLCF, also Linux, Mac OS X

HDF5
BLAS
More external software

December 2017
- 7 math libraries
- 2 domain components
- Spack xSDK installer
- 16 mandatory xSDK community policies

Extreme-Scale Scientific Software Development Kit (xSDK)

Domain components
- Reacting flow, etc.
- Reusable.

Libraries
- Solvers, etc.
- Interoperable.

Frameworks & tools
- Doc generators.
- Test, build framework.

Software engineering
- Productivity tools.
- Models, processes.

PFLOTRAN
Alquimia
PFLOTRAN

Multiphysics Application C
Application A
Application B

xSDK functionality, Dec 2017
Tested on key machines at ALCF, NERSC, OLCF, also Linux, Mac OS X

HDF5
BLAS
More external software

December 2017
- 7 math libraries
- 2 domain components
- Spack xSDK installer
- 16 mandatory xSDK community policies

Extreme-Scale Scientific Software Development Kit (xSDK)

Domain components
- Reacting flow, etc.
- Reusable.

Libraries
- Solvers, etc.
- Interoperable.

Frameworks & tools
- Doc generators.
- Test, build framework.

Software engineering
- Productivity tools.
- Models, processes.

PFLOTRAN
Alquimia
PFLOTRAN

Multiphysics Application C
Application A
Application B

xSDK functionality, Dec 2017
Tested on key machines at ALCF, NERSC, OLCF, also Linux, Mac OS X

HDF5
BLAS
More external software

December 2017
- 7 math libraries
- 2 domain components
- Spack xSDK installer
- 16 mandatory xSDK community policies

Extreme-Scale Scientific Software Development Kit (xSDK)

Domain components
- Reacting flow, etc.
- Reusable.

Libraries
- Solvers, etc.
- Interoperable.

Frameworks & tools
- Doc generators.
- Test, build framework.

Software engineering
- Productivity tools.
- Models, processes.

PFLOTRAN
Alquimia
PFLOTRAN

Multiphysics Application C
Application A
Application B

xSDK functionality, Dec 2017
Tested on key machines at ALCF, NERSC, OLCF, also Linux, Mac OS X

HDF5
BLAS
More external software

December 2017
- 7 math libraries
- 2 domain components
- Spack xSDK installer
- 16 mandatory xSDK community policies

Extreme-Scale Scientific Software Development Kit (xSDK)

Domain components
- Reacting flow, etc.
- Reusable.

Libraries
- Solvers, etc.
- Interoperable.

Frameworks & tools
- Doc generators.
- Test, build framework.

Software engineering
- Productivity tools.
- Models, processes.

PFLOTRAN
Alquimia
PFLOTRAN

Multiphysics Application C
Application A
Application B

xSDK functionality, Dec 2017
Tested on key machines at ALCF, NERSC, OLCF, also Linux, Mac OS X

HDF5
BLAS
More external software

December 2017
- 7 math libraries
- 2 domain components
- Spack xSDK installer
- 16 mandatory xSDK community policies

Extreme-Scale Scientific Software Development Kit (xSDK)

Domain components
- Reacting flow, etc.
- Reusable.

Libraries
- Solvers, etc.
- Interoperable.

Frameworks & tools
- Doc generators.
- Test, build framework.

Software engineering
- Productivity tools.
- Models, processes.

PFLOTRAN
Alquimia
PFLOTRAN

Multiphysics Application C
Application A
Application B

xSDK functionality, Dec 2017
Tested on key machines at ALCF, NERSC, OLCF, also Linux, Mac OS X

HDF5
BLAS
More external software

December 2017
- 7 math libraries
- 2 domain components
- Spack xSDK installer
- 16 mandatory xSDK community policies

Extreme-Scale Scientific Software Development Kit (xSDK)

Domain components
- Reacting flow, etc.
- Reusable.

Libraries
- Solvers, etc.
- Interoperable.

Frameworks & tools
- Doc generators.
- Test, build framework.

Software engineering
- Productivity tools.
- Models, processes.

PFLOTRAN
Alquimia
PFLOTRAN

Multiphysics Application C
Application A
Application B

xSDK functionality, Dec 2017
Tested on key machines at ALCF, NERSC, OLCF, also Linux, Mac OS X

HDF5
BLAS
More external software

December 2017
- 7 math libraries
- 2 domain components
- Spack xSDK installer
- 16 mandatory xSDK community policies

Extreme-Scale Scientific Software Development Kit (xSDK)

Domain components
- Reacting flow, etc.
- Reusable.

Libraries
- Solvers, etc.
- Interoperable.

Frameworks & tools
- Doc generators.
- Test, build framework.

Software engineering
- Productivity tools.
- Models, processes.

PFLOTRAN
Alquimia
PFLOTRAN

Multiphysics Application C
Application A
Application B

xSDK functionality, Dec 2017
Tested on key machines at ALCF, NERSC, OLCF, also Linux, Mac OS X

HDF5
BLAS
More external software

December 2017
- 7 math libraries
- 2 domain components
- Spack xSDK installer
- 16 mandatory xSDK community policies

Extreme-Scale Scientific Software Development Kit (xSDK)

Domain components
- Reacting flow, etc.
- Reusable.

Libraries
- Solvers, etc.
- Interoperable.

Frameworks & tools
- Doc generators.
- Test, build framework.

Software engineering
- Productivity tools.
- Models, processes.

PFLOTRAN
Alquimia
PFLOTRAN

Multiphysics Application C
Application A
Application B

xSDK functionality, Dec 2017
Tested on key machines at ALCF, NERSC, OLCF, also Linux, Mac OS X

HDF5
BLAS
More external software

December 2017
- 7 math libraries
- 2 domain components
- Spack xSDK installer
- 16 mandatory xSDK community policies

Extreme-Scale Scientific Software Development Kit (xSDK)

Domain components
- Reacting flow, etc.
- Reusable.

Libraries
- Solvers, etc.
- Interoperable.

Frameworks & tools
- Doc generators.
- Test, build framework.

Software engineering
- Productivity tools.
- Models, processes.
xSDK History: Version 0.4.0: December 2018

https://xsdk.info

Each xSDK member package uses or can be used with one or more xSDK packages, and the connecting interface is regularly tested for regressions.

xSDK functionality, Dec 2018

Tested on key machines at ALCF, NERSC, OLCF, also Linux, Mac OS X

Multiphysics Application C

Application A

Application B

Domain components
- Reacting flow, etc.
- Reusable.

Libraries
- Solvers, etc.
- Interoperable.

Frameworks & tools
- Doc generators.
- Test, build framework.

SW engineering
- Productivity tools.
- Models, processes.

Extreme-Scale Scientific Software Development Kit (xSDK)

December 2018
- 17 math libraries
- 2 domain components
- 16 mandatory xSDK community policies
- Spack xSDK installer

Impact: Improved code quality, usability, access, sustainability

Foundation for work on performance portability, deeper levels of package interoperability
xSDK library dependencies
xSDK History: Version 0.5.0 (in progress): November 2019

https://xsdk.info

Each xSDK member package uses or can be used with one or more xSDK packages, and the connecting interface is regularly tested for regressions.

xSDK functionality, Nov 2019

Tested on key machines at ALCF, NERSC, OLCF, also Linux, Mac OS X

Multiphysics Application C

Application A

Application B

- Alquimia
- SLEPc
- hypre
- AMReX
- Omega_h
- deal.IL
- libEnsemble
- More libraries

- PETSc
- SUNDIALS
- PUMI
- PHIST
- Ginkgo
- More libraries

- SuperLU
- Trilinos
- MFEM
- MAGMA
- preCICE

- STRUMPACK
- DTK
- Tasmanian
- PLASMA
- ButterflyPack

- HDF5
- BLAS
- More external software

November 2019

- 21 math libraries
- 2 domain components
- 16 mandatory xSDK community policies
- Spack xSDK installer

Domain components
- Reacting flow, etc.
- Reusable.

Libraries
- Solvers, etc.
- Interoperable.

Frameworks & tools
- Doc generators.
- Test, build framework.

SW engineering
- Productivity tools.
- Models, processes.

Extreme-Scale Scientific Software Development Kit (xSDK)

Impact: Improved code quality, usability, access, sustainability

Foundation for work on performance portability, deeper levels of package interoperability
xSDK community policies: Help address challenges in interoperability and sustainability of software developed by diverse groups at different institutions

xSDK compatible package: must satisfy the mandatory xSDK policies (M1, ..., M16)
Topics include: configuring, installing, testing, MPI usage, portability, contact and version information, open source licensing, namespacing, and repository access

Also specify **recommended policies**, which currently are encouraged but not required (R1, ..., R7)
Topics include: public repository access, error handling, freeing system resources, and library dependencies

xSDK member package:
(1) Must be an xSDK-compatible package, and
(2) it uses or can be used by another package in the xSDK, and the connecting interface is regularly tested for regressions.

xSDK policies 0.5.0: June 2019
- Facilitate combined use of independently developed packages

Impact:
- Improved code quality, usability, access, sustainability
- Foundation for work on deeper levels of interoperability and performance portability

We encourage feedback and contributions!
xSDK community policies
now also on github:
https://github.com/xsdk-project/xsdk-community-policies

xSDK compatible package:
Must satisfy mandatory xSDK policies:
M1. Support xSDK community GNU Autoconf or CMake options.
M2. Provide a comprehensive test suite.
M3. Employ user-provided MPI communicator.
M4. Give best effort at portability to key architectures.
M5. Provide a documented, reliable way to contact the development team.
M6. Respect system resources and settings made by other previously called packages.
M7. Come with an open source license.
M8. Provide a runtime API to return the current version number of the software.
M9. Use a limited and well-defined symbol, macro, library, and include file name space.
M10. Provide an accessible repository (not necessarily publicly available).
M11. Have no hardwired print or IO statements.
M12. Allow installing, building, and linking against an outside copy of external software.
M13. Install headers and libraries under <prefix>/include/ and <prefix>/lib/.
M14. Be buildable using 64 bit pointers. 32 bit is optional.
M15. All xSDK compatibility changes should be sustainable.
M16. The package must support production-quality installation compatible with the xSDK install tool and xSDK metapackage.

Also recommended policies, which currently are encouraged but not required:
R1. Have a public repository.
R2. Possible to run test suite under valgrind in order to test for memory corruption issues.
R3. Adopt and document consistent system for error conditions/exceptions.
R4. Free all system resources it has acquired as soon as they are no longer needed.
R5. Provide a mechanism to export ordered list of library dependencies.
R6. Provide versions of dependencies.
R7. Have README, SUPPORT, LICENSE, and CHANGELOG file in top directory.

Changes in 0.5.0:
- New recommended policy R7
- Dropped the requirement to detect MPI 2 features in M3
- Made various editorial changes in M5, M13, M15, and R2 for clarification or to fix typos.

xSDK member package: Must be an xSDK-compatible package, and it uses or can be used by another package in the xSDK, and the connecting interface is regularly tested for regressions.
Changing or adding community policies

- Community policies now also available on github: https://github.com/xsdk-project/xsdk-community-policies

- Propose new/revised policy:
 - Open a github pull request
 - Send a note to xsdk-developers@xsdk.info with link and summary
 - Add a discussion of pull request to xSDK meeting agenda

- Adopt new/revised policy:
 - The new or revised policy can be adopted at a meeting by consensus of attendees if at least 10 xSDK team members are present.
 - If no consensus: policy proposal should be revised, or put to a formal vote of member package leads (or their delegate). One vote is allowed per member package.
Compatibility with xSDK community policies

To help developers of packages who are considering compatibility with xSDK community policies, we provide:

- Template with instructions to record compatibility progress
- Examples of compatibility status for xSDK packages
 - Explain approaches used by other packages to achieve compatibility with xSDK policies
- Available at https://github.com/xsdk-project/xsdk-policy-compatibility
Processes for xSDK release and delivery

- 2-level release process
 - xSDK member packages
 - Achieve compatibility with xSDK community policies prior to release
 - https://github.com/xsdk-project/xsdk-policy-compatibility
 - Have a Spack package
 - Port to target platforms
 - Provide user support
 - xSDK
 - Ensure and test compatibility of mostly independent package releases

- Obtaining the latest release: https://xsdk.info/releases
- Draft xSDK package release process checklist:
 - https://docs.google.com/document/d/16y2bL1RZg8wke0vY8c97ssvhRYNez34Q4QGg4LoIEUk/edit?usp=sharing

xSDK delivery process

- Regular releases of software and documentation, primarily through member package release processes
- Anytime open access to production software from GitHub, BitBucket and related community platforms
xSDK release process - Spack/git workflow

• Packages
 – Follow the standard workflow for a Spack package
 – Submit pull requests with the “xSDK” label
 – Provide package candidate and final releases for xSDK releases

• xSDK meta-package
 – Depends on xSDK member packages: “spack install xsdk”
 – Maintain xsdk branch in spack for release coordination

• Coordinate development:
 – Via ‘development’ version of xsdk – using development versions of some of the individual packages
Downloading xSDK

1. Obtain xSDK using Spack.

xSDK is distributed primarily with the Spack package manager.

You can obtain Spack from the [github repository](https://xsdk.info/download) using this command:

```bash
git clone https://github.com/spack/spack.git
```

Installing xSDK

1. After cloning `spack` git repo, setup spack environment

```bash
# For bash users
$ export SPACK_ROOT=/path/to/spack
$ . $SPACK_ROOT/share/spack/setup-env.sh

# For tcsh or csh users (note you must set SPACK_ROOT)
$ setenv SPACK_ROOT /path/to/spack
$ source $SPACK_ROOT/share/spack/setup-env.csh
```

2. Setup spack compilers

Spack compiler configuration is stored in `$HOME/spack/SUNAME/compilers.yml` and can be checked with:

```bash
spack compiler list
```
Upcoming xSDK releases for ECP

FY20-FY23: Regular releases of xSDK for ECP

Theme throughout ECP timeframe: Expanding ECP math library capabilities for predictive science: Sustainable coordination and delivery of math libraries across independent development efforts, with enhanced capabilities as needed by ECP applications

• Additional math packages compatible with xSDK community policies
• Deeper multilevel interoperability, including control inversion and adaptive execution
• Coordination with broader ECP software ecosystem