
Software Design (Software Aging)Software Design (Software Aging) © SERG

“Software Aging”
by D. L. Parnas

Software Design (Software Aging)Software Design (Software Aging) © SERG

Software Aging

“Programs, like people, get old. We can’t prevent aging, but we can
understand its causes, take steps to limit its effects, temporarily
reverse some of the damage it has caused, and prepare for the day
when the software is no longer viable. ... (We must) lose our
preoccupation with the first release and focus on the long term
health of our products.”

D.L. Parnas

Software Design (Software Aging)Software Design (Software Aging) © SERG

Software “Aging”?

• “It does not make sense to talk about
software aging!”
– Software is a mathematical product,

mathematics does not decay with time.
– If a theorem was correct 200 years ago, it will

be correct tomorrow.
– If a program is correct today, it will be correct

100 years from now.
– If a program is wrong 100 years from now, it

must have been wrong when it was written.
• All of the above statements are true, but not

really relevant.

Software Design (Software Aging)Software Design (Software Aging) © SERG

Software Does Age

• Software aging is gaining in significance
because:
– of the growing economic importance of

software,
– software is the “capital” of many high-tech

firms.

Software Design (Software Aging)Software Design (Software Aging) © SERG

Software Does Age

• The authors and owners of new software
products often look at aging software with
disdain.

• “If only the software had been designed
using today’s languages and techniques …”

• Like a young jogger scoffing at an 86 year
old man (ex-champion swimmer) and
saying that he should have exercised more
in his youth!

Software Design (Software Aging)Software Design (Software Aging) © SERG

The Causes of Software Aging

• There are two types of software aging:
– Lack of Movement: Aging caused by the

failure of the product’s owners to modify it to
meet changing needs.

– Ignorant Surgery: Aging caused as a result of
changes that are made.

• This “one-two punch” can lead to rapid
decline in the value of a software product.

Software Design (Software Aging)Software Design (Software Aging) © SERG

Lack of Movement
• Unless software is frequently updated, its

user’s will become dissatisfied and change
to a new product.

• Excellent software developed in the 60’s
would work perfectly well today, but
nobody would use it.

• That software has aged even though nobody
has touched it.

• Actually, it has aged because nobody
bothered to touch it.

Software Design (Software Aging)Software Design (Software Aging) © SERG

Ignorant Surgery

• One must upgrade software to prevent
aging.

• Changing software can cause aging too.
• Changes are made by people who do not

understand the software.
– Hence, software structure degrades.

Software Design (Software Aging)Software Design (Software Aging) © SERG

Ignorant Surgery (Cont’d)
• After many such changes nobody

understands the software:
– the original designers no longer understand the

modified software,
– those who made the modification still do not

understand the software.
• Changes take longer and introduce new

bugs.
• Inconsistent and inaccurate documentation

makes changing the software harder to do.

Software Design (Software Aging)Software Design (Software Aging) © SERG

The Cost of Software Failure

• Inability to keep up,
• reduced performance,
• decreasing reliability.

Software Design (Software Aging)Software Design (Software Aging) © SERG

Inability To Keep Up
• As software ages, it grows bigger.
• “Weight gain” is a result of the fact that the

easiest way to add a feature is to add new
code.

• Changes become more difficult as the size
of the software increases because:
– There is more code to change,
– it is more difficult to find the routines that must

be changed.
• Result: Customers switch to a “younger”

product to get the new features.

Software Design (Software Aging)Software Design (Software Aging) © SERG

Reduced Performance
• As the size of the program grows, it places

more demands on the computer memory.
• Customers must upgrade their computers to

get acceptable response.
• Performance decreases because of poor

design that has resulted from long-term ad
hoc maintenance.

• A “younger” product will run faster and use
less memory because it was designed to
support the new features.

Software Design (Software Aging)Software Design (Software Aging) © SERG

Decreasing Reliability

• As the software is maintained, errors are
introduced.

• Many studies have shown that each time an
attempt is made to decrease the failure rate
of a system, the failure rate got worse!

• That means that, on average, more than one
error is introduced for every repaired error.

Software Design (Software Aging)Software Design (Software Aging) © SERG

Decreasing Reliability (Cont’d)

• Often the choice is to either:
– abandon the project
– stop fixing bugs

• For a commercial product, Parnas was once
told that the list of known unrepaired bugs
exceeded 2,000.

Software Design (Software Aging)Software Design (Software Aging) © SERG

Reducing the Cost of SW Aging

• We should be looking far beyond the first
release to the time when the product is old.

• Inexperienced programmers get a “rush”
after the first successful compile or
demonstration.

• Experienced programmers realize that this
is only the beginning ...

Software Design (Software Aging)Software Design (Software Aging) © SERG

Reducing the Cost of SW Aging
(Cont’d)

• Responsible, professional, organizations
realize that more work is invested between
the time after the first successful run and the
first release than is required to get the first
successful run.

• Extensive testing and rigorous reviews are
necessary.

Software Design (Software Aging)Software Design (Software Aging) © SERG

Preventive Medicine

• Design for success
• Keep records (documentation)
• Seek second opinions (reviews)

Software Design (Software Aging)Software Design (Software Aging) © SERG

Design for Success

• Design for change.
• This principle is known by various names:

– information hiding
– abstraction
– separation of concerns
– data hiding
– object-orientation

Software Design (Software Aging)Software Design (Software Aging) © SERG

Design for Change

• To apply this principle one begins by trying
to characterize the changes that are likely to
occur over the “lifetime” of a product.

• Since actual changes cannot be predicted,
predictions will be about classes of changes:
– changes in the UI
– change to a new windowing system
– changes to data representation
– porting to a new operating system ...

Software Design (Software Aging)Software Design (Software Aging) © SERG

Design for Change (Cont’d)

• Since it is impossible to make everything
equally easy to change, it is important to:
– estimate the probabilities of each type of

change
– organize the software so that the items that are

most likely to change are “confined” to a small
amount of code

Software Design (Software Aging)Software Design (Software Aging) © SERG

Why is Design for Change
Ignored?

• Textbooks fail to discuss the process of
estimating the probability of change for
various classes of changes.

• Programmers are impatient because they are
too eager to get the first version working.

• Designs that result from this principle are
different from the “natural” designs of the
programmer’s intuition.

Software Design (Software Aging)Software Design (Software Aging) © SERG

Why is Design for Change
Ignored? (Cont’d)

• Few good examples of the application of the
principle. Designers tend to mimic other
designs they have seen.

• Programmers tend to confuse design
principles with languages.

• Many practitioners lack training in software
development.

Software Design (Software Aging)Software Design (Software Aging) © SERG

Keeping Records
(Documentation)

• Even when software is well designed, it is
often not documented.

• When documentation is present it is often:
– poorly organized
– inconsistent
– incomplete
– written by people who do not understand the

system

Software Design (Software Aging)Software Design (Software Aging) © SERG

Documentation

• Hence, documentation is ignored by
maintainers.

• Worse, documentation is ignored by
managers because it does not speed up the
initial release.

Software Design (Software Aging)Software Design (Software Aging) © SERG

Second Opinions (Reviews)

• In engineering, as in medicine, the need for
reviews by other professionals is never
questioned.

• In designing a building, ship, aircraft, there
is always a series of design documents that
are carefully reviewed by others.

Software Design (Software Aging)Software Design (Software Aging) © SERG

Reviews
• This is not true in the software industry:

– Many programmers have no professional
training in software at all.

– Emphasis of CS degrees on mathematics and
science; professional discipline is not a topic
for a “liberal” education.

– Difficult to find people who can serve as
quality reviewers; no money to hire outsiders.

– Time pressure misleads designers into thinking
that they have no time for proper reviews.

– Many programmers resent the idea of being
reviewed.

Software Design (Software Aging)Software Design (Software Aging) © SERG

Reviews

• Every design should be reviewed and
approved by someone whose
responsibilities are for the long-term future
of the product.

Software Design (Software Aging)Software Design (Software Aging) © SERG

Why is Software Aging
Inevitable?

• Our ability to design for change depends on
our ability to predict the future.

• We can do so only approximately and
imperfectly.

• Over a period of years:
– changes that violate original assumptions will

be made
– documentation will never be perfect
– reviewers are bound to miss flaws ...

Software Design (Software Aging)Software Design (Software Aging) © SERG

Why is Software Aging
Inevitable? (Cont’d)

• Preventive measures are worthwhile but
anyone who thinks that this will eliminate
aging is living in a dream world.

Software Design (Software Aging)Software Design (Software Aging) © SERG

Software Geriatrics

• Retroactive Documentation:
– A major step in slowing the age of older

software, and often rejuvenating it, is to
upgrade the quality of the documentation.

• Retroactive Modularization:
– Change structure so that each module hides a

design decision that is likely to change.

Software Design (Software Aging)Software Design (Software Aging) © SERG

Software Geriatrics (Cont’d)

• Amputation:
– A section of code has been modified so often,

and so thoughtlessly, that it is not worth saving.
• Major Surgery (Restructuring):

– Identify and eliminate redundant components
and gratuitous dependencies.

Software Design (Software Aging)Software Design (Software Aging) © SERG

Planning Ahead
• It’s time to stop acting as if “getting it to

run” was the only thing that matters.
• Designs and changes have to be

documented and carefully reviewed.
• If it’s not documented, it’s not done.
• In other areas of engineering, product

obsolescence is recognized and included in
design and marketing plans.

• The same should be done for software
engineering.

	Software Aging
	Software “Aging”?
	Software Does Age
	Software Does Age
	The Causes of Software Aging
	Lack of Movement
	Ignorant Surgery
	Ignorant Surgery (Cont’d)
	The Cost of Software Failure
	Inability To Keep Up
	Reduced Performance
	Decreasing Reliability
	Decreasing Reliability (Cont’d)
	Reducing the Cost of SW Aging
	Reducing the Cost of SW Aging (Cont’d)
	Preventive Medicine
	Design for Success
	Design for Change
	Design for Change (Cont’d)
	Why is Design for Change Ignored?
	Why is Design for Change Ignored? (Cont’d)
	Keeping Records (Documentation)
	Documentation
	Second Opinions (Reviews)
	Reviews
	Reviews
	Why is Software Aging Inevitable?
	Why is Software Aging Inevitable? (Cont’d)
	Software Geriatrics
	Software Geriatrics (Cont’d)
	Planning Ahead

