Algorithms of Scientific Computing - Summer 10
- Term
- Summer 10
- Lecturer
- Tobias Neckel, Dirk Pflüger
- Time and Place
- Tuesdays 10:15-11:45 and Thursdays 10:15-11:45, room MI 02.07.023, starting 20/04/2010
- Tutorial: Wednesdays 10:15-11:45, room MI 02.07.023, starting 28/04/2010
- Audience
- Modul IN2001
- Informatik Diplom: Wahlpflichtfach im Bereich theoretische Informatik
- Informatik Master: Wahlfach im Fachgebiet "Algorithmen und Wissenschaftliches Rechnen"
- Informatik Master: Elective topic, subject area "Algorithms and Scientific Computing"
- Informatik/Wirtschaftsinformatik Bachelor: Wahlfach
- Studierende der Mathematik/Technomathematik, Natur- und Ingenieurwissenschaften
- Tutorials
- Kristof Unterweger, Gerrit Buse
- Exam
- 2nd exam (~90 minutes), Monday, October 11, 9:00, MI HS 02; auxiliary material: 2 pages (=1 sheet) DIN A4 (handwritten, no photocopies, no printed versions)
- Semesterwochenstunden / ECTS Credits
- 6 SWS (4V + 2Ü) / 8 Credits
- TUMonline
- {{{tumonline}}}
What's ASC (former AWR) about?
Many applications in computer science require methods of (prevalently numerical) mathematics - especially in science and engineering, of course, but as well in surprisingly many areas that one might suspect to be directly at the heart of computer science:
Consider, for example, Fourier and wavelet transformations, which are indispensable in image processing and image compression. Space filling curves (which have been considered to be "topological monsters" and a useless theoretical bauble at the end of the 19th century) have become important methods used for parallelization and the implementation of data bases. Numerical methods for minimization and zero-setting are an essential foundation of Neural Networks in machine learning.
Algorithms of Scientific Computing (former Algorithmen des Wissenschaftlichen Rechnens) provides a generally understandable and algorithmically oriented introduction into the foundations of such mathematical methods. Topics are:
- The fast Fourier transformation (FFT) and some of its variants:
- FCT (Fast Cosine Transform), real FFT, Application for compression of video and audio data
- Space filling curves (SFCs):
- Construction and properies of SFCs
- Application for parallelization and to linearize multidimensional data spaces in data bases
- Hierarchical and recursive methods in scientific computing
- From Archimede's quadrature to the hierarchical basis
- Cost vs. accuracy
- Sparse grids, wavelets, multi-grid methods
News
- On Thursday, July 8, we have our chair's annual excursion. You are invited (or should we say urged? ;-) ) to come and join!
- Practicals in winter term 2010/11
- Bachelor-Praktikum (PSE) Molekulardynamik (Meeting Friday, 16. July, 10.00 Uhr)
- Masterpraktikum Scientific Computing - High Performance Computing (Meeting: Friday, 16. July, 10:45 Uhr)
- Masterpraktikum Scientific Computing - Advanced C++ Programming (Meeting: Wednesday, 14. July, 16:00 Uhr)
- Exam review, see above
Material
Introduction
Fast Fourier Transform
- Discrete Fourier Transform (DFT) - 20.04.10
- Fast Fourier Transform (FFT) - 22.04.10
- FFT on Real-valued Data - 27.04.10
- additional info: paper Paul N. Swarztrauber - Symmetric FFTs (access via LRZ proxy necessary)
- Quarter-Wave-Fourier Transform and Discrete Cosine Transform - 29.04.10
- Discrete Sine Transform - 06.05.10
Hierarchical Methods
- Archimedes' Quadrature (one-dimensional) - 19.05.10
- The Maple worksheet (or non-executable in HTML)
- Cost and Accuracy - 20.05.10, 27.05.10
- Hierarchical Decomposition, 1d - 27.05.10, 01.06.10
- Archimedes' Quadrature (d-dimensional) - 01.06.10, 08.06.10
- The Maple-Worksheet (or non-executable in HTML)
- The recursive call tree als Mindmap for Freemind ("Free"mind, as it's free) and the HTML export
- Hierarchical decomposition, d-dimensional; 11.06.2010: corrected tableau of surplusses/volumes
- Intermezzo: Finite Elements
- Algorithms and Data Structures
- Sparse Grid Classification
- Multigrids; Update 05.07.2010: some spelling errors corrected
- The Maple worksheet (or non-executable in HTML)
- Printable version 8 slides per page up to current state
Space-Filling Curves
- Quadtrees - 06.07.10
- Hilbert curve - 06. & 08.07.10
- Hilbert Traversal and Hilbert Mapping - 08. & 13.07.10
- Maple-Worksheets: turtle.mws (Turtle-Grafics) und hilbert_adap.mws (Hilbert traversal on quadtrees)
- Maple-Worksheets: hilbert.mws (Hilbert-Arithmetisierung) und hilbert_part.mws (Inversion of the Hilbert curve, partitioning)
- Approximating polygons, space-filling curves & fractals - 13. & 15.07.10
- Maple-Worksheets: hilbert.mws (Hilbert arithmetrisation) und peano.mws (Peano arithmetisation)
- Space-filling curves in 3D - 15.07.09
- Maple-Worksheets: hilbert_3D_a.mws, hilbert_3D_b.mws, hilbert_3D_c.mws, hilbert_3D_d.mws (Hilbert arithmetisation in 3D, 4 variants)
Worksheets and Solutions
Number | Topic | Worksheet | Date | Solution |
---|---|---|---|---|
1 | Discrete Fourier Transform | Worksheet 1 | 28.4. | Solution 1 pallas1.mws
( also in html: pallas1.html) pallas2.mws ( also in html: pallas2.html) |
2 | Discrete Fourier Transform | Worksheet 2 | 5.5. | Solution 2
uebung2.mw ( also in html: uebung2.html) |
3 | Fast Poisson Solver | Worksheet 3a | 7.5. | Solution 3a |
3 | Discrete Cosine Transform | Worksheet 3 | 12.5. | Solution 3 |
4 | Hierarchical Surplus | Worksheet 4 | 26.5. | Solution 4
solution4.mw ( also in html: solution4.html) |
5 | Hierarchical Basis/Norms of Functions | Worksheet 5 | 2.6. | Solution 5
solution5.mw ( also in html: solution5.html) |
6 | Multidimensional Quadrature | Worksheet 6 | 9.6. |
Solution 6, empty template as spreadsheet document |
7 | Combination Technique | Worksheet 7 | 22.6. |
Solution 7 solution7.mw ( also in html: solution7.html) |
8 | Generating Systems | Worksheet 8 | 24.6. |
Solution 8 solution8_gensys.mw ( also in html: solution8.html) |
9 | Orthogonality | Worksheet 9 | 30.6. | |
10 | Grammars for Space-filling Curves | Worksheet 10 | 6.7. | Solution 10
regularPeano.mw ( also in html: regularPeano.html) meanderPeano.mw ( also in html: meanderPeano.html) realturtle_hilbert.mw ( also in html: realturtle_hilbert.html) realturtle_hilbert1.mw ( also in html: realturtle_hilbert1.html) realturtle_hilbert2.mw ( also in html: realturtle_hilbert2.html) |
11 | Arithmetization of Space-filling Curves | Worksheet 11 | 14.7. |
Solution 11 peano_switch.mws ( also in html: peano_switch.html) kochturtle.mw ( also in html: kochturtle.html) |
Literature
Fast Fourier Transform:
The lecture is oriented on:
- W.L. Briggs, Van Emden Henson: The DFT - An Owner's Manual for the Discrete Fourier Transform, SIAM, 1995
- Thomas Huckle, Stefan Schneider: Numerische Methoden - Eine Einführung für Informatiker, Naturwissenschaftler, Ingenieure und Mathematiker, Springer-Verlag, Berlin-Heidelberg, 2.Auflage 2006 (German only)
- Charles van Loan: Computational Frameworks for the Fast Fourier Transform, SIAM, 1992
Hierarchical Methods and Sparse Grids
- Skript of H.-J. Bungartz for the lecture "Rekursive Verfahren und hierarchische Datenstrukturen in der numerischen Analysis" (German only)
- General overview paper on Sparse Grids
Space-filling Curves:
- Hans Sagan: Space-Filling Curves, Springer-Verlag, 1994
- Lecture notes of Prof. Bader (German only)