Personal tools

Completed Research and Development Projects

From Sccswiki

Jump to: navigation, search

Contents

Project list (sorted by funding agency)

Bayerische Forschungsstiftung

Website of the Bayerische Forschungsstiftung

Short name Project name Project type Finished
- Postdoctoral Grant Ekaterina Elts Postdoctoral Grant 2009
FORTWIHR Design of efficient computation methods for problems of fluid dynamics Bavarian Consortium for High Performance Scientific Computing
FORTWIHR Design of efficient parallel algorithms for the computation of fluid dynamics in complex geometries Bavarian Consortium for High Performance Scientific Computing
FORTWIHR Simulation und Optimalsteuerung von Luft- und Raumfahrtsystemen und Werkzeuge für Parallelrechner Bavarian Consortium for High Performance Scientific Computing
FORTWIHR Numerische Simulation von Schmelz- und Beschichtungsprozessen Bavarian Consortium for High Performance Scientific Computing

Excellence Initiative

Short name Project name Project type Finished
IGSSE-1-8 Hardware-aware Simulation and Computing IGSSE Project 2011
IGSSE-1-4 Development of New Methods for the Production of Highly Reactive Polyisobutenes IGSSE Project 2011
IGSSE-3-10 Distributed stochastic simulation for the hydroelastic analysis of very large floating structures IGSSE Project 2012

Federal Ministry of Education and Research (BMB+F)

Website of the Federal Ministry of Education and Research (BMB+F)

Short name Project name Project type Finished
ELPA Highly Scalable Eigenvalue Solvers for Petaflop Applications Förderinitiative "HPC Software for Scalable, Parallel Hardware" 2012
IMEMO Innovative HPC-Methoden und Einsatz für hochskalierbare Molekulare Simulation Förderinitiative "HPC Software for Scalable, Parallel Hardware" 2012
FIDEUM Finanzderivate in unvollständigen Märkten Förderinitiative "Mathematik für Innovationen in Industrie und Dienstleistungen" 2010
DIWERK DIWERK - Density Functional Methods as a Tool for Chemistry Förderinitiative "High Performance Scientific Computing"
03ZEM1M1 Efficient, robust and accuruate Solvers for linear system of equations resulting from mechanistic models for the simulation of time-dependant two-phase water-steam-streams Förderinitiative "Neue mathematische Verfahren in Industrie und Dienstleistungen"
ITO Information Technology Online (ITO) Förderprogramm Neue Medien in der Bildung (NMB) 2003
Non-Linear Characterization and Analysis of FEM Simulation Results for Motor-Car Components and Crash Tests (SIMDATA-NL) BMBF support program: Mathematics for innovations in the Industrial and Service Sectors 2013

German Academic Exchange Service (DAAD)

Website of the German Academic Exchange Service (DAAD)

Short name Project name Project type Finished
Simulation Technology Summer school Simulation Technology in Romania Programm Sommerschulen im Ausland 2004
SimLab Accompanying Mobility Measures for the SimLab in Belgrade - SimLab Scholarship Program and Compact Courses DAAD Programme Academic Reconstruction of South Eastern Europe 2010

German Research Foundation (DFG)

Website of the German Research Foundation (DFG)

Short name Project name Project type Finished
Micropumps Modeling and Simulation of Micropumps DFG project 2010
FOR493 Numerical Simulation of Fluid-Structure Interactions on Cartesian Grids Research Group FOR493 2010
SFB411 - C4 Principles of aerob biological wastewater treatment Subproject of Priority Program 411 2003
SFB438 - Z2 Mathematical Modelling, Simulation and Verification of material-oriented processes and intelligent systems Subproject of Priority Program 438
SFB342 Methods and Tools for the use of parallel hardware archictures Subproject of Priority Program 342
Research Training Group Kooperation und Ressourcenmanagement in verteilten Systemen -
SP1103 Volume-oriented Modeling as a Foundation of Network-based Co-operative Planning Processes in Structural Engineering Schwerpunktprogramm 1103 2006

G8 Initiative

Website of the G8 Research Councils Initiative on Multilateral Research Funding

Short name Project name Project type Finished
Nu-FuSe Nuclear Fusion Simulations at Exascale – Nu-FuSe 2016

Hochschulrektorenkonferenz

Short name Project name Project type Finished
SimLab Belgrade Installation of a simulation laboratory (SimLab) at the University of Belgrade for use in research and education Förderung von hochschulpolitischen Projekten in der Bundesrepublik Jugoslawien

Industrial cooperations

Short name Project name Project type Funded by Finished
TabletPC Simulation Technology Goes Mobile HP Hardware Grant Hewlett-Packard 2006
Structural mechanics Distributed Simulation of structural mechanic problems based on recursive substructering Within the framework FORTWIHR Siemens AG
Numerical Simulation of coupled problems Numerical Simulation of coupled problems Within the framework FORTWIHR Siemens AG
Octree Algorithms on Octree-datastructures for the examnination of collisions in CAD-modeled components in automotive engineering Within the framework FORTWIHR Tecoplan Informatik
NEC Scalable High Performance Shared Memory Vector Computer and their Applications to Fluid Flow Investigations Within the framework FORTWIHR NEC-ESS
Cray The combination method for turbulence simulation Within the framework FORTWIHR Cray Research


Landesstiftung Baden-Württemberg

Website of the Landesstiftung Baden-Württemberg

Short name Project name Project type Finished
MSV Multimodale Simulation des Verkehrsablaufs in großen Netzen Förderprogramm Modellierung und Simulation auf Höchstleistungsrechnern 2007
Nucleation (S) Massive parallel molecular simulation and visualization of the nucleation in mixtures for scale-overlapping models Förderprogramm Modellierung und Simulation auf Höchstleistungsrechnern 2006

TUM-KAUST Strategic Partnership

Short name Project name Project type Finished
KAUST-P1 CO2 Sequestration KAUST-TUM Kooperation 2013
KAUST-P2 Virtual Arabia KAUST-TUM Kooperation 2013
KAUST-P5 High-Performance Visual Computing KAUST-TUM Kooperation 2015

Virtuelle Hochschule Bayern

Short name Project name Project type Finished
vhb - CSE Development of courses for the vhb Virtuelle Hochschule Bayern (vhb)

Volkswagen Foundation

Short name Project name Project type Finished
Mathematical Thinking Development and enhancement of creative application of mathematical thinking Perspektiven der Mathematik an der Schnittstelle von Schule und Universität 2003

Others

Short name Project name Project type Funded by Finished
SeisSol Kernels Optimization of Dense and Sparse Matrix Kernels for SeisSol on SuperMUC KONWIHR project Bayer. Staatsministerium für Wissenschaft, Forschung und Kunst 2014
CANDI CANDI EU Tempus Project EU 2013
BaCaTeC-NPS Scalable Tsunami and Atmospheric Simulation on Heterogeneous Manycore Platforms Kooperationsvorbereitung BaCaTeC 2013
Belgrad EU Tempus Belgrad EU Tempus Project EU 2012
SkvG Efficient Parallel Simulation of Fluid Flow on Cartesian Grids KONWIHR Übergangsfin. High-Tech-Offensive Bayern 2008
RTB-Bayern TP3.8 Distributed computing in engineering applications part of FORTWIHR DFN-Verein
NumStoch NumStoch: Automatic pre-correction of numerical programming tasks self-study online Universität Stuttgart
DEISA DECI 4 DEISA DECI 4: DRatchet HPC Project [1]

Project Descriptions

A High-End Toolbox for Simulation and Optimisation of Multi-Physics PDE Models

Project type Förderprogramm ”Bayern exzellent”: Munich Centre of Advanced Computing (MAC)
Funded by Bavarian state government, Technische Universität München
Begin 2008
End 2012
Leader Prof. Dr. Michael Ulbrich
subproject: Univ.-Prof. Dr. Hans-Joachim Bungartz, Dr. rer. nat. Miriam Mehl
Staff Janos Benk, M.Sc
Contact person Dr. rer. nat. Miriam Mehl
Co-operation partner Prof. Dr. Michael Ulbrich, Prof. Dr. Martin Brokate, Prof. Dr. Ernst Rank, Prof. Dr. Ronald Hoppe (Augsburg)

Brief description

The project aims at bundling forces to overcome conceptional drawbacks of current simulation software and to make a big step towards a future generation of simulation and optimisation tools for complex systems. The goal is to develop a rapid prototyping HPC software platform for both simulation and optimisation. The design will be hierarchical, with high performance components on all levels, ranging from problem formulation via discretisation to numerics and parallelisation. Work will be interwoven with theoretical investigations of innovative numerical algorithms.


A Scalable Infrastructure for Computational Steering

Project type Förderprogramm ”Bayern exzellent”: Munich Centre of Advanced Computing (MAC)
Funded by Bavarian state government, Technische Universität München
Begin 2009
End 2013
Leader Prof. Dr. Rüdiger Westermann
subproject: Univ.-Prof. Dr. Hans-Joachim Bungartz
Staff Daniel Butnaru, M.Sc
Contact person Univ.-Prof. Dr. Hans-Joachim Bungartz
Co-operation partner Prof. Dr. Rüdiger Westermann, Prof. Bernd Brügge, Ph.D., Prof. Dr. Ernst Rank, Prof. Dr.-Ing. Wolfgang Wall

Brief description

The goal of this project is to design and prototype a scalable infrastructure for computational steering. It will be targeted for the computational engineering domain, which allows to leverage existing cooperative developments as a starting point and to use real-world data that is representative in size, modality, and structure to what is available in other scientific areas like geology or biology. The infrastructure implements a processing pipeline ranging from scalable data processing workflows to interactive visualisation and human-computer interaction in virtual and augmented reality environments.


BaCaTeC-NPS

Project type High-tech research collaborations between Bavaria and California
Funded by BaCaTeC
Begin Juli 2012
End December 2013
Leader Univ.-Prof. Dr. Michael Bader, Prof. Francis X. Giraldo
Staff Kaveh Rahnema, Alexander Breuer
Contact person Univ.-Prof. Dr. Michael Bader

Scalable Tsunami and Atmospheric Simulation on Heterogeneous Manycore Platforms:

Applications in the geosciences more than others rely on the availability of extreme computational performance. The required HPC and supercomputing platforms are heavily based on heterogeneous accelerator hardware: general-purpose graphical processing units (GPGPU), accelerator hardware, and mainstream manycore developments, such as Intel’s MIC architecture, will soon dominate this field. While fully exploiting the performance of such platforms is a challenge of its own, the applications’ need for dynamic adaptive mesh refinement makes the development of algorithms and software even more demanding. Within this BaCaTeC project, the two involved groups together with two consultants at Intel will combine their expertise to optimize their simulation codes for tsunami and atmospheric simulation (both using discontinuous Galerkin methods for discretization) for CPU and GPU-based platforms.

Belgrad

Project type EU Tempus Project
Funded by EU
Begin 15.01.2009
End 14.01.2012
Leader Faculty of Mechanical Engineering, University of Belgrade
Staff Prof. Dr.-Ing. Martin Gabi (Universität Karlsruhe), Prof. Dr. rer. nat. Ernst Rank (TUM), Univ.-Prof. Dr. Hans-Joachim Bungartz (TUM), Dr. Mihailo Ristic (Imperial College London), Prof. Dr. Javier Alvarez del Castillo (Universitat Politècnica de Catalunya)), The German University in Cairo - GUC, Prof. Dr. Milos Nedeljkovic (University of Belgrade), Prof. Dr. Milan Matijevic (University of Kragujevac), Prof. Dr. Dragan Lazic (University of Belgrade), Prof. Dr. Zarko Cojbasic (University of Nis)
Contact person Prof. Milos Nedeljkovic
Co-operation partner ASIIN e.V. (Düsseldorf), Andrej Vrbancic (Robotina doo, Slovenija), Prof. Dr. Radivoje Mitrovic (Ministry of Education, Serbia), National Tempus Office Serbia, Dr. Zaljko Despotovic (Institute "Mihajlo Pupin", Serbia), Rectorate of University of Belgrade, Biserka Ilic (Informatika doo, Serbia), Dusan Babic (IvDam Process Control doo, Serbia)

CANDI

Project type EU Tempus Project
Funded by EU
Begin January 2010
End December 2013
Leader University Vienna
Staff Univ.-Prof. Dr. Hans-Joachim Bungartz, Univ.-Prof. Dr. Ernst W. Mayr, Univ.-Prof. Dr. Helmut Seidl, Dr. rer. nat. Tobias Weinzierl
Contact person Dr. rer. nat. Tobias Weinzierl
Co-operation partner see official webpage

Brief description

The CANDI project will develop both the infrastructure for e-Learning / Retraining, and the skills necessary to transfer existing courses and curricula to an e-Learning environment. The project is set up in a way to address multiple problems simultaneously:

  • Most obviously, CANDI will help to educate large numbers of students. Additional costs for the infrastructure will be modest, since no new buildings are necessary, existing teaching \ personnel can be employed, and only modest investment in computer infrastructure is necessary.
  • CANDI will help to narrow the gap between the education level in central universities and the provinces.
  • CANDI will train the local university staff in systematic and effective use of e-Learning, presentation technology, and related didactic skills. Existing e-Learning approaches we saw in Central Asia mostly involve electronic versions of course notes on the internet.
  • Importantly, CANDI will use e-Learning not only to teach students, but also to teach university staff, in particular at institutions in provincial cities. In fact, e-Learning will also become the main medium to teach e-Learning skills.
  • CANDI will support the retraining of industry staff. On the other hand, CANDI will also open opportunities for industry to deliver applied courses and lectures to a university audience.
  • CANDI will employ cheap open source solutions for e-Learning. In addition to these direct effects, CANDI will also have important positive indirect effects on universities and industries in Uzbekistan and Kazakhstan:
  • CANDI will have a pilot phase where existing courses from European partners will be transferred into the e-Learning framework. Since these courses will reflect the state of the art in their respective areas (mostly Computer Science, Chemistry, Computational Science, Soft Skills), they will by their nature improve the quality of the curricula inside and outside of e-Learning.
  • The establishment of standardized e-learning courses facilitates the convergence of different academic systems, and thus the possibility of a credit transfer system.
  • CANDI will improve the English and soft skill knowledge of all participants, thereby improving the ability of Central Asian staff to achieve sustainability by international grants.
  • By building the competence for e-Learning, CANDI will also contribute to the knowledge base in software engineering and programming in Uzbekistan and Kazakhstan.

DAAD/EU: Accompanying Mobility Measures for the SimLab in Belgrade - SimLab Scholarship Program and Compact Courses

Website of the project

Project type DAAD Programme Academic Reconstruction of South Eastern Europe
Funded by German Academic Exchange Service (DAAD)
Begin February 2002
End December 2010
Leader Univ.-Prof. Dr. Hans-Joachim Bungartz
Staff Dr. Ralf-Peter Mundani, Dipl.-Ing. Ioan Lucian Muntean
Contact person Univ.-Prof. Dr. Hans-Joachim Bungartz

SimLab Scholarship program

Seventh SimLab Course on Parallel Numerical Simulation

Additional information


DEISA-DECI4

DEISA DECI 4: DRatchet - Particle Transport in Drift Ratchet as an Application Example for High-Performance CFD and Fluid-Structure Interaction =

Project type Grid Computing-based CFD and FSI Simulations
Funded by DEISA
Begin January 2008
End December 2008
Leader Univ.-Prof. Dr. Hans-Joachim Bungartz
Staff Dipl.-Ing. Ioan Lucian Muntean
Contact person Dipl.-Ing. Ioan Lucian Muntean
Co-operation partner Prof.Dr. Peter Hänggi (Physik, Uni Augsburg), Prof.Dr.-Ing. Rodica Potolea (TU Cluj-Napoca)

Brief description

By means of numerical simulations (CFD and FSI), this project contributes to a better understanding of the physical phenomena involved in particle separation methods based on drift ratchets. This will allow for the optimization and tailoring of the system parameters for specific types of particles and transporting flows. The drift ratchet simulation scenario is computationally expensive, especially because of large simulation times with small time steps, multi-scale models, multi-physics phenomena, and the movement of particles in the complex geometry of the ratchets.

In this project, we focus on:

  • computation of CFD and FSI simulations on grid computing environments;
  • parameter study of drift ratchet scenarios;
  • simulation software tuning for different high-performance computing architectures available within DEISA.

Furthermore, we intend to broaden the software package GridSFEA to support and ease the execution of these large and complex simulations on the Grid.

Development of New Methods for the Production of Highly Reactive Polyisobutenes

Project type IGSSE Project Team
Funded by Excellence Initiative of the German federal and state governments
Begin April 2007
End January 2011
Leader Univ.-Prof. Dr. Hans-Joachim Bungartz, Dr. rer. nat. Miriam Mehl
Staff Csaba Attila Vigh, M.Sc

Dr. rer. nat. Tobias Neckel

Contact person Dr. rer. nat. Miriam Mehl
Co-operation partner Prof. Dr. Fritz Kühn (Chemisty, TUM)

Brief description

Polyisobutene are used in industry in large amounts. Depending on their molecular weight, they are required for rubber production or applied as adhesives, e.g.. More than 100,000 t of highly reactive polyisobutene are produced per year. Thus, efficiency and environmental compatibility are very important tasks. However, to achieve a high qulity and good productivity, all known production methods require reaction temperatures far below 0 degree celsius and solvents such as methylenchloirde, dichlormethane, or ethene. Recently, a new type of catalysts was developed at TUM (Lst. für Anorganische Chemie), that allows the production of highly reactive polyisobutene at ambient temperature and in solvents free from chlorine. The tasks of this group are to transfer this method developed on the laboratory scale to the scale of a production reactor, the detection of the underlying chemical reaction mechanisms, and, finally, the further improvement of the method. To reach these tasks, we will exploit synergies between chemistry and informatics by combining methods of experimental chemistry (reaction mechanisms, testing of other catalysts, heterogeneous catalysis, etc.) and scientific computing (examination and optimization of the cooling of the exothermic reactions, flow and transport processes).

Distributed stochastic simulation for the hydroelastic analysis of very large floating structures

Project type IGSSE Project Team
Funded by Excellence Initiative of the German federal and state

governments

Begin Oktober 2008
End September 2011
Leader Univ.-Prof. Dr. Hans-Joachim Bungartz, Dr. rer. nat. Miriam Mehl
Staff Bernhard Gatzhammer, M.Sc, Dipl.-Inf. Marion Bendig
Contact person Dr. rer. nat. Miriam Mehl
Co-operation partner Prof.Dr. Ernst Rank, Dr. Ralf-Peter

Mundani, PD Dr. Alexander Düster, Prof. PhD Chien Ming Wang (Singapur), SOFiSTiK AG (Oberschleißheim)

Brief description

Very large floating structures (VLFS) are more and more employed by a number of countries in creating land space from the ocean. These “swimming islands” are of pontoon-type and benefit from high stability, low manufacturing costs, and easy maintenance. Owing to their much larger dimensions in length than in depth, the VLFS are relatively flexible and, thus, VLFSs have to be robustly designed against wave-induced deformations and stresses. As such a reliability analysis involves many uncertainties, efficient methods have to be developed that allow for both the modelling of uncertain behaviour and the handling of the computational complexity. In this project, the main objective focuses on the development and implementation of a prototype for the hydroelastic analysis of VLFS. Therefore, stochastic finite elements are subject of choice for the planned reliability analysis over huge sets of different structural properties, while sophisticated techniques of modern grid computing should tackle the computational problem of such complex parameter studies.

Efficient Parallel Simulation of Fluid Flow on Cartesian Grids

Project type Competence Network for Technical, Scientific High Performance Computing in Bavaria
Funded by High-Tech-Offensive Bayern
Begin 2001
End open
Leader Univ.-Prof. Dr. Hans-Joachim Bungartz, Univ.-Prof. Dr. Christoph Zenger, Dr. rer. nat. Miriam Mehl
Staff Dipl.-Ing. Ioan Lucian Muntean, Dipl.-Tech. Math. Tobias Neckel, Dipl.-Inf. Tobias Weinzierl
Contact person Dr. rer. nat. Miriam Mehl

Brief description

Due to their structuredness in combination with highly local adaptive refinement possibilities, adaptive Cartesian grids offer a very big potential in the context of hardware and, in particular, memory efficient implementation of numerical flow solvers. This project examines the applicability of the corresponding methods for the direct numerical simulation of turbulent channel flows on high performance computers. A particular focus is on the isotropic adaptive refinement of boundary layers and the efficient parallelization on high performance computing architectures.

Efficient Parallel Strategies in Computational Modelling of Materials

Project type Förderprogramm ”Bayern exzellent”: Munich Centre of Advanced Computing (MAC)
Funded by Bavarian state government, Technische Universität München
Begin 2008
End 2012
Leader Prof. Dr. Dr. h.c. Notker Rösch
subproject: Univ.-Prof. Dr. Hans-Joachim Bungartz
Staff Martin Roderus
Contact person Martin Roderus
Co-operation partner Prof. Dr. Dr. h.c. Notker Rösch, Prof. Dr. Arndt Bode, Prof. Dr. Michael Gerndt, Prof. Dr. Heinz-Gerd Hegering

Brief description

The project will develop a new paradigm for the parallelisation of density functional theory (DFT) methods for electronic structure calculations and implement this new strategy. Advanced embedding techniques will account for environment effects (e.g. solvent, support) on a system, which requires a strong modularisation of the DFT approach, facilitating task specific parallelisation, memory management, and low-level optimisation. Efficiency will be further increased by dynamical adaptation of varying resource usage at module level and pooling of applications.


ELPA

Highly Scalable Eigenvalue Solvers for Petaflop Applications

Project type BMBF-Projekt; "HPC Software für skalierbare Parallelrechner"
Funded by BMBF
Begin 2008
End 2012
Leader Rechenzentrum Garching, Dr. Hermann Lederer
Staff Thomas Auckenthaler, Univ.-Prof. Dr. Michael Bader, Univ.-Prof. Dr. Hans-Joachim Bungartz, Univ.-Prof. Dr. Thomas Huckle
Contact person Thomas Auckenthaler
Co-operation partners Rechenzentrum Garching (Dr. H. Lederer),
Bergische Universität Wuppertal, Lehrstuhl für Angewandte Informatik (Prof. A. Frommer, Prof. B. Lang),
Fritz-Haber-Institut, Berlin, Abt. Theorie (Prof. M. Scheffler, Dr. V. Blum),
Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig, Abt. Komplexe Strukturen in Biologie und Kognition (Prof. J. Jost),
IBM Deutschland GmbH

Brief description

The ELPA project will develop highly scalable solvers for Eigenvalue problems. Primary goal will be the design and implementation of a highly scalable direct Eigensolver for large, dense, symmetric matrices. Integration of the respective code into a respective library is planned. In addition, the use of iterative solvers for specific Eigenproblems will also be investigated.

EU: DEISA DECI 7 - DiParTS

Project type HPC/Grid Project
Funded by DEISA
Begin July 2010
End April 2011
Leader Univ.-Prof. Dr. Hans-Joachim Bungartz, Dr. rer. nat. Tobias Weinzierl
Staff Dipl.-Inf. Atanas Atanasov, Dipl.-Inf. Kristof Unterweger
Contact person Dr. rer. nat. Tobias Weinzierl
Co-operation partner Dr.-Ing. Ionel Muntean (TU Cluj-Napoca), King Abdullah University of Science and Technology (KAUST)

Brief description

The DiParTS project (Distributed Particle Transport Simulation in a Grid-like HPC CFD Environment) numerically studies particles dispersed in non-stationary fluids within tube-like geometries on the micro-scale, where the fluid and, as a consequence, the particles are stimulated by an oscillating pressure. The particles’ long-time behaviour due to the pressure oscillations, i.e. their averaged movement on the long-term time-scale, allows us to draw conclusions, for example, on the causes of particle sedimentary deposition and centrifugal particle separation in several applications, as the particles exhibit a drift along the stimulation amplitude. Here, classical fluid-structure interaction phenomena interplay with Brownian motion and particle-wall interaction. In a preceding DEISA project, we already studied simplified experimental setups on the short-time time-scale. Despite some promising and interesting insights from a fluid-dynamics point of view, the full simulation of the situation described above however proved to be far from solvable with today’s computing power. Due to this proposal, we nevertheless will broaden the horizon of computability, as we switch from a fully coupled system to an approach where the fluid simulation without particles on an extremely fine spatial and temporal resolution is cut into small time intervals, these chunks of computational challenges are deployed to supercomputers, and the fluid fields are coarsened spatially before the supercomputer streams the data back to the scientist’s local workstation where it is post-processed, i.e. the Brownian motion and the particles’ effect are remotely added to the flow field after the fluid dynamics time step has terminated. The extreme computing power spent on this waterfall process – in particular on the fine-scale fluid dynamics simulation – will yield new insights on the long-time behaviour of the overall simulation setup, while the approach is validated simultaneously by a comparison of a fully-coupled fluid-interaction setting with the decoupled simulation for several small time steps.

Official DEISA webpage

FOR493

DFG: Numerical Simulation of Fluid-Structure Interactions on Cartesian Grids (FOR493)

Website of the project


Project type Forschergruppe 493
Funded by German Research Foundation
Begin August 2003
End May 2010
Leader Univ.-Prof. Dr. Hans-Joachim Bungartz, Dr. rer. nat. Miriam Mehl
Staff Bernhard Gatzhammer, M.Sc, Dipl.-Tech. Math. Tobias Neckel
Contact person Univ.-Prof. Dr. Hans-Joachim Bungartz
Co-operation partner Prof.Dr. Krafczyk (Institut für Computeranwendungen im Bauingenieurwesen, TU Braunschweig)

Prof.Dr. E. Rank (Lehrstuhl für Bauinformatik, TU München)

Brief description

Im Projekt P6 der DFG-Forschergruppe 493 soll ein streng partitionierter Ansatz zur numerischen Simulation von Fluid-Struktur-Wechselwirkungen weiterentwickelt und an prototypischen und zugleich technisch relevanten Modellkonfigurationen erprobt werden. Für die Strömungsberechnungen wird der auf kartesischen Gittern arbeitende MAC-Code Nast++, entwickelt für die Behandlung zeitabhängiger laminarer Strömungen viskoser inkompressibler Fluide in veränderlichen dreidimensionalen Geometrien, weiterentwickelt und eingesetzt. Zur Berechnung der Antwort der flexiblen Strukturen bringt das Projekt P10 (Prof. Rank, Dr.-Ing. Düster) einen Löser zur strukturdynamischen Simulation in den partitionierten Ansatz ein. Nach zunächst vorzunehmenden Verbesserungen bzw. Erweiterungen am Ströungscode soll die voll transiente (implizite) Kopplung im Sinne der partitionierten Lösung realisiert und im Hinblick auf Robustheit und Stabilität untersucht und optimiert werden. Zur Validierung soll vor allem das Prinzipexperiment FLUSTRUC-A aus Projekt P4 (Prof. Durst, Dr.-Ing. Breuer, Dipl.-Ing. Lienhart) dienen. Ein weiterer Schwerpunkt der Arbeiten liegt auf der Bereitstellung einer modularen Software-Infrastruktur, die über einheitlich definierte Schnittstellen den einfachen Austausch von Komponenten gestattet und somit in der Forschergruppe beispielsweise zum Vergleich verschiedener Strukturlöser bzw. verschiedener Fluidlöser in unterschiedlichen Szenarien genutzt werden kann. Hierbei findet eine intensive Kooperation der Teilprojekte P6, P8 und P10 statt.

G8-Initiative: Nuclear Fusion Simulations at Exascale (Nu-FuSe)

Project type G8 Research Councils Initiative on Multilateral Research Funding
Funded by G8 group of leading industrial nations
Begin July 2011
End April 2016
Leader Univ.-Prof. Dr. Hans-Joachim Bungartz
Staff Dr. rer. nat. Tobias Neckel
Contact person Dr. rer. nat. Tobias Neckel
Co-operation partner Prof. Frank Jenko ( Max-Planck Institut für Plasmaphysik, IPP)

Brief description

The G8 project Nu-FuSE is an international project looking to significantly improve computational modelling capabilities to the level required by the new generation of fusion reactors. The focus is on three specific scientific areas: fusion plasma; the materials from which fusion reactors are built; and the physics of the plasma edge. This will require computing at the “exascale” level across a range of simulation codes, collaborating together to work towards full integrated fusion tokamak modelling.

To exploit upcoming exascale systems effectively for fusion modelling creates significant challenges around scaling, resiliency, result validation and programmability. This project will be focusing on meeting these challenges by improving the performance and scaling of community modelling codes to enable simulations orders of magnitude larger than are currently undertaken.

Hardware-oriented Simulation and Computing

Project type IGSSE Project Team
Funded by Excellence Initiative of the German federal and state governments
Begin April 2007
End March 2010
Leader Dr. rer. nat. Michael Bader, Dr. Carsten Trinitis
Staff Csaba Attila Vigh, M.Sc,

Dipl.-Inf. Tobias Weinzierl

Contact person Dr. rer. nat. Michael Bader
Co-operation partner Prof.Dr. Arndt Bode (CeCVDE, TUM-Informatik), Prof. Dr. Markus Schwaiger (BioMedTUM)

Brief description

The recent development of commodity as well as high-performance computers shows that computationally and data intensive tasks can only benefit from the hardware's full potential, if both processor and architecture features are taken into account - from the early algorithmic design up to the final implementation. Evident examples are the limited memory access via a hierarchy of cache memory and the increasingly hybrid and hierarchical design of high-end systems, both complicated by the ongoing trend towards multi- and manycore CPUs, accelerators and other HPSoCs (High Performance Systems on a Chip). Against this background, this proposal focuses on hardware-aware programming in the context of several applications from Science and Engineering:

  • Simulation of fluid flow problems on dynamically adaptive discretisation grids using recursive structured grid generation approaches and space-filling curves for parallelisation and cache-oblivious implementation.
  • Compute- and memory-intensive Boundary Element calculations of electric field and potential distributions in the context of simulation and optimisation of High Voltage Apparatus design. (Group Prof. Bode).
  • Hardware-aware algorithms for image reconstruction in medical imaging. (Group Prof. Schwaiger)

IMEMO

Innovative HPC-Methoden und Einsatz für hochskalierbare Molekulare Simulation

Project type BMBF-Projekt; "HPC Software für skalierbare Parallelrechner"
Funded by BMBF
Begin 2008
End 2012
Leader Prof. Dr.-Ing. Michael Resch, HLRS, Universität Stuttgart
Staff Martin Buchholz, Ekaterina Elts, M.Sc, Wolfgang Eckhardt, Univ.-Prof. Dr. Michael Bader, Univ.-Prof. Dr. Hans-Joachim Bungartz
Contact person Martin Buchholz
Co-operation partners Institut für Techno- und Wirtschaftsmathematik (ITWM) an der Fraunhofer Gesellschaft (Dr. Franz-Josef Pfreundt),
Höchstleistungsrechenzentrum (HLRS) der Universität Stuttgart (Prof. Dr.-Ing. Michael Resch),
Lehrstuhl für Thermodynamik (LTD) an der Universität Kaiserslautern (Prof. Dr.-Ing. Hans Hasse),
Lehrstuhl für Thermodynamik und Energietechnik (ThEt) an der Universität Paderborn (Prof. Dr.-Ing. Jadran Vrabec)

Brief description

Within the IMEMO project, our SCCS group will develop efficient algorithms for the parallelisation of large-scale molecular simulations. One of the main questions is the dynamical load balancing in settings where strong imbalances occur, such as during condensation processes, where the distribution of molecules in different parts of the computational domain will vary over several orders of magnitude. A further important focus is the development of hierarchical parallel algorithms on highly parallel clusters of manycore processors.

ITO

Information Technology Online

Project type Förderprogramm Neue Medien in der Bildung (NMB)
Funded by BMB+F
Begin January 2001
End December 2003
Leader Prof.Dr. Hans-Joachim Bungartz
Staff Srihari Narasimhan, M.Sc.
Dr.rer.net Stefan Zimmer
Contact person Srihari Narasimhan, M.Sc.
Co-operation partner miscellaneous Institutes of the Universität Stuttgart, TU Dresden, TU Hamburg-Harburg, TU Müchen and the PH Ludwigsburg

Brief description

Das Ziel des Projektes bestand darin, multimediale englischsprachige Lehrinhalte auf der Basis der Vorlesungen der Projektpartner zu entwickeln und innerhalb unterschiedlicher Lernszenarien einzusetzen.

Um Austausch und Wiederverwendung zu gewährleisten, war ein modulares Konzept mit geeigneter Hierarchie erforderlich. Auf oberster Ebene steht jeweils ein multimedialer Kurs, welcher ein gesamtes Themengebiet abdeckt und sich aus mehreren Lehrmodulen zusammensetzt. Die Bandbreite der Lehrmodule reicht dabei von Basis-Lehrmaterialien, wie z. B. einzelnen Folien einer PowerPoint-Präsentation, Video-Clips und Screen-Movies, bis hin zu größeren, in sich abgeschlossenen Multimedia-Vorlesungen. Letztere setzen sich aus Lehrmodulen feinerer Granularität zusammen, wobei multimediale Darstellungsformen die Anschaulichkeit wissenschaftlicher Zusammenhänge verbessern.

Während bei den Multimedia-Vorlesungen die Erläuterung des Lehrstoffes durch Dozenten erfolgt, ermöglichen web-basierte Lernapplikationen ergänzend dazu eine selbstständige Erarbeitung des Lehrstoffes. Die für die Präsenzveranstaltungen erstellten Lehrmodule bilden dabei die Ausgangsbasis für die Realisierung dieser Lernapplikationen. Die Lehrmodule und Lernapplikationen kommen schließlich auch im Rahmen der beruflichen Weiterbildung zum Einsatz.

Additional information

Overview of the implemented Course modules

Course Modules

KONWIHR: Computational Steering of Complex Flow Simulations

Project type Kompetenznetzwerk für Technisch-Wissenschaftliches

Hoch- und Höchstleistungsrechnen in Bayern KONWIHR II

Funded by BMBF
Begin 2008
End 2011
Leader Univ.-Prof. Dr. Hans-Joachim Bungartz, Dr. rer. nat. Miriam Mehl
Staff Tobias Neckel
Contact person Dr. rer. nat. Miriam Mehl
Co-operation partner Prof.Dr. Ernst Rank, Prof. Dr. Michael Manhart, Prof. Dr. Bernd Simeon, Prof. Dr. Peter Rentrop

Brief description

Computational Science and Engineering faces a continuous increase of speed of computers and availability of very fast networks. Yet, it seems that some opportunities offered by these ongoing developments are only used to a fraction for numerical simulation. Moreover, despite new possibilities in computer visualisation, virtual or augmented reality and collaboration models, most available engineering software still follows the classical way of a strict separation of pre-processing, computing and post-processing. In the previous work of the applicants of this proposal, some of the major obstructions for an interactive computation for complex simulation tasks in engineering sciences have been identified and partially removed. These were especially found in traditional software structures, in the definition of geometric models and boundary conditions, and in the often still very tedious work of generating computational meshes. A generic approach for collaborative computational steering has been developed, where pre- and post-processing are integrated with high-performance computing and which supports cooperation of workgroups being connected via the internet. Suitable numerical methods are at the core of this approach such as the Lattice Boltzmann method (LBM) for fluid flow simulation. The proposed project will extend this approach in various directions.

KONWIHR: Optimization of a Multi-Functional Shallow Water Solver for Complex Overland Flows

Project type KONWIHR III project
Funded by Bayer. Staatsministerium für Wissenschaft, Forschung und Kunst
Begin 2016
End 2017
Leader Univ.-Prof. Dr. Hans-Joachim Bungartz, Dr. rer. nat. Philipp Neumann
Staff Roland Wittmann, M.Sc.
Contact person Dr. rer. nat. Philipp Neumann

Brief description

In this project, we strive for an optimized implementation of an existing shallow water (SWE) solver for overland flows, including the important features to simulate complex overland flow: focus is put on efficient data structures for overland flow simulations as well as data access, vectorization and parallelization, and extensive testing of parallelized, patch-based spatially adaptive simulations. We aim to achieve efficient data access and vectorization by detailed analysis and re-implementation of the FullSWOF kernels and potential re-design of the data structures. With the SWE solver working on regular Cartesian grids only, we further consider an embedding of the solver in libspacetree/PeanoClaw, a light-weight spacetree implementation which extends arbitrary solvers by spatial/temporal adaptivity and parallelism. Patch-based spatial adaptivity may yield algorithmic speedups and pays off in particular for overland flow scenarios where parts of the computational domain are only slightly or completely irrelevant for flooding (e.g., particular plateau or hill regions). Moreover, we plan to evaluate the performance of the optimized implementation on “standard” processors, and also on the Intel MIC architecture as provided by LRZ (cluster SuperMIC).


Mathematical Thinking

Development and enhancement of creative application of mathematical thinking

Project type Perspektiven der Mathematik an der Schnittstelle von Schule und Universität
Funded by VW-Stiftung
Begin January 2001
End December 2003
Leader Prof.Dr. Hans-Joachim Bungartz
Staff Prof.Dr. Hans-Joachim Bungartz
Contact person Prof.Dr. Hans-Joachim Bungartz
Co-operation partner Lehrstuhl für Angewandte Analysis mit Schwerpunkt Numerik (Prof. Dr. Ronald H.W. Hoppe, Universität Augsburg), Lehrstuhl für Algebra und Zahlentheorie (Prof. Dr. Jürgen Ritter, Universität Augsburg)

Micropumps

DFG: Modeling and Simulation of Micropumps

Project type German Research Foundation Project
Funded by German Research Foundation
Begin April 2003
End August 2010
Leader Dr. rer. nat. Miriam Mehl, Univ.-Prof. Dr. Christoph Zenger
Staff Dipl.-Inf. Tobias Weinzierl, Dipl.-Tech. Math. Tobias Neckel, Dipl.-Ing. Ioan Lucian Muntean
Contact person Dr. rer. nat. Miriam Mehl
Co-operation partner Prof.Dr. Peter Hänggi (Physik, Uni Augsburg)

Brief description

In this project, a new type of micropumps will be examined in detail. The micropump consists of a three-dimensional array of identical pores with periodically but asymmetrically varying diameter, within which a suspension with particles to be sorted is pumped to and fro. The interplay of the flow field and of stochastic thermical forces results - according to the principles of Brownian Motors - in a directed movement of the suspended particles. As the transport direction depends on the dynamically relevant details of the system, in particular for example of the particle size, this hydrodynamical micropump can be used for a continuous and parallel sorting of particles. The Brownian motion of small particles in a time-dependent viscous flow field through a pore with varying diameter represents a challenging and complex hydrodynamical problem. As, however, an as accurate as possible understanding of the underlying physical processes is indispensable for an experimental realization of the micropump, this problem shall be exhaustively examined within this project with the help of a combination of analytical and numerical methods. Special subjects are:

  • transport properties of particles in dependence on the parameters particle size, pumping amplitude and frequency, pore shape, etc.,
  • Interactions between particles via their volume and hydrodynamical effects,
  • efficiency of particle sorting.

MISTI MIT-TUM Project: Combining Model Reduction with Sparse Grids into a Multifidelity Framework for Design, Control and Optimization

Webpage of MISTI

Project type MISTI Germany Project
Funded by MISTI
Begin January 2012
End September 2013
Leader Univ.-Prof. Dr. Hans-Joachim Bungartz
Staff Daniel Butnaru, M.Sc, Benjamin Peherstorfer, M.Sc
Contact person Univ.-Prof. Dr. Hans-Joachim Bungartz
Co-operation partner Univ.-Prof. Dr. Karen Willcox (MIT)

Brief description

Many engineering problems require repeated simulations in order to model and optimize a real life system. Such models are typically quite complex and a single solution usually involves a huge computational effort. If a large number of such expensive solutions is needed, the models become impractical and alternatives are sought, with the goal of enabling interactive and highly reliable high-accuracy simulations. Surrogate models mimic the behavior of the simulation model as closely as possible and are at the same time computationally much cheaper to evaluate. While certain surrogate methods exist and perform well for specific problems, their acceptance is slowed by their complex and intrusive manner. They need to be reconsidered for each problem class and are sensitive to the characteristics of the underlying simulation.

In this project we open a collaboration between MIT and TUM in the area of model reduction with an initial focus on non-intrusive methods. These treat the simulation as a black box and, based only on a number of snapshots, deliver an approximation which can than be efficiently queried. The joint work will combine MIT’s model-reduction techniques with TUM’s sparse grid methods with the goal of delivering a novel non-intrusive model reduction technique.

MSV

Multimodal Simulation of Traffic Flow in Large Networks

Project type Förderprogramm Modellierung und Simulation auf Höchstleistungsrechnern
Funded by Landesstiftung Baden-Württemberg
Begin October 2004
End January 2007
Leader Prof.Dr. Hans-Joachim Bungartz
Staff Dipl.-Inf. Michael Moltenbrey
Contact person Prof.Dr. Hans-Joachim Bungartz
Co-operation partner Prof.Dr.-Ing. Markus Friedrich (ISVS, Universität Stuttgart)
Prof.Dr.-Ing. Wolfram Ressel (ISVS, Universität Stuttgart)

Brief description

Within this projects methods of traffic simulations (private transport and public transport) are examined. The main focus is on the implementation of the used assignment models (route search, route choice and traffic flow model) on high performance computers, in order to simulate large networks in arguable time.

Non-Linear Characterization and Analysis of FEM Simulation Results for Motor-Car Components and Crash Tests (SIMDATA-NL)

Project type BMBF support program: Mathematics for innovations in the Industrial and Service Sectors
Funded by BMBF
Begin July 2010
End June 2013
Leader Univ.-Prof. Dr. Hans-Joachim Bungartz
Staff Benjamin Peherstorfer, M.Sc, Dr. rer. nat. Dirk Pflüger
Contact person Dr. rer. nat. Dirk Pflüger
Co-operation partner Prof. Dr. Michael Griebel (INS, Bonn)

Prof. Dr. Claudia Czado (Mathematical Statistics, TU München), Dr. Jochen Garcke (Institute of Mathematics, TU Berlin), Clemens-August Thole, Prof. Dr. Ulrich Trottenberg (SCAI, St. Augustin), AUDI AG, PDTec AG, Volkswagen AG

Brief description

The project aims at the extraction of the (few) effective dimensions in high-dimensional simulation data in the context of automotive design. Linear methods, like the principal component analysis, alone are not sufficient for many of those applications due to significant non-linear effects. Therefore, they will be complemented by methods that are able to resolve nonlinear relationships, especially by means of sparse grid discretizations.

Nucleation

Massive parallel molecular simulation and visualization of the nucleation in mixtures for scale-overlapping models

Project type Förderprogramm Modellierung und Simulation auf Höchstleistungsrechnern
Funded by Landesstiftung Baden-Württemberg
Begin October 2004
End October 2006
Leader Prof.Dr. Hans-Joachim Bungartz
Staff Dr.-Ing. Martin Bernreuther
Contact person Prof.Dr. Hans-Joachim Bungartz
Co-operation partner Prof.Dr. Thomas Ertl (VIS, Universität Stuttgart)
Prof.Dr.-Ing. Hans Hasse (ITT, Universität Stuttgart)
Prof.Dr.-Ing. Karlheinz Schaber (ITTK, Universität Karlsruhe)

Brief description

Spontan auftretende Phasenzerfälle bestimmen viele Prozesse in Natur und Technik. Solche Zerfälle sind zum Beispiel der entscheidende Schritt bei der Herstellung nanoskaliger Partikel, sie sind auch für Vorgänge in der Atmosphäre verantwortlich, die unser Klima stark beeinflussen. Bei der Modellierung und Simulation solcher Prozesse ist die Bestimmung der Keimbildungsrate von zentraler Bedeutung. Die Kenntnisse hierüber sind bislang völlig unzureichend, insbesondere, wenn Mischungen mehrerer Stoffe betrachtet werden. Die direkte molekulare Simulation bietet die Möglichkeit, solche Keimbildungsraten vorauszuberechnen. Bislang ist dies aber aufgrund von Beschränkungen der Rechenleistung nur für den weniger interessanten Fall extrem hoher Übersättigungen (Keimbildungsraten) möglich. Der Einsatz von HPC eröffnet hier völlig neue Perspektiven. Als besonders attraktiv erscheinen dabei Simulationen auf massiv parallelen, skalierbaren Architekturen mit verteiltem Speicher, von Clustern bis hin zum Grid, für die geeignete Verteilungs- und Lastausgleichsstrategien zu entwickeln sind. Zum besseren Verständnis des Prozesses der Keimbildung sowie der Morphologie der Nanopartikel muss deren Entstehung visualisiert werden. Hierzu müssen eine Vielzahl von verteilt simulierten Partikeln und ihre Eigenschaften in einer Darstellung vereint und durch adaptive Clustering-Verfahren interaktiv Strukturen extrahiert werden. Schließlich müssen, auch zur Validierung, die Ergebnisse der molekularen Betrachtung an höhere Ebenen der Prozessmodellierung und -simulation angebunden werden. Hierfür ist eine Schnittstelle zur populationsdynamischen Beschreibung der Phänomene zu schaffen. Ziel des Projekts ist es letztlich, Methoden und Werkzeuge für die skalenübergreifende Modellierung, Hochleistungsrechner-basierte Simulation und Visualisierung der betrachteten, technisch bzw. in der Natur außerordentlich wichtigen Vorgänge bereitzustellen. Dazu ist ein eng aufeinander abgestimmtes Zusammenwirken von ingenieurwissenschaftlichen Gruppen und Gruppen aus der Informatik erforderlich, wie es im Projekt vorgesehen ist.

NumStoch

Automatic pre-correction of numerical programming tasks

Project type self-study online
Funded by Universität Stuttgart
Begin January 2004
End December 2004
Leader Prof.Dr. Hans-Joachim Bungartz
Staff Dr.rer.net Stefan Zimmer
Contact person Dr.rer.net Stefan Zimmer

Brief description

Im Rahmen der Übungen zur Vorlesung Numerische und Stochastische Grundlagen der Informatik, die im WS03/04 erstmals angeboten wurde und für Informatiker und Softwaretechniker Pflichtveranstaltung im 3. Semester ist, haben die Teilnehmer Programmieraufgaben zu numerischen Fragestellungen zu bearbeiten und im bestehenden eClaus-System elektronisch einzureichen.

Die Korrektur dieser Programme soll durch eine automatische Vorkorrektur effizienter gestaltet werden, die Ergebnisse der Vorkorrektur sollen so aufbereitet werden, dass sie den Teilnehmern als Ergänzung zu den Kommentaren der Korrektoren zur Verfügung gestellt wird, um mit vertretbarem Aufwand ein aussagekräftigeres individuelles Feedback zu ermöglichen.

Bei einer Nutzung der Programmieraufgaben als Selbstlernmodule ist auch eine ausschließliche Verwendung der automatischen Vorkorrektur möglich, die den Studierenden konkrete Hinweise auf Fehler und Verbesserungsmöglichkeiten liefert.

Optimization of Dense and Sparse Matrix Kernels for SeisSol on SuperMUC

Project type KONWIHR III project
Funded by Bayer. Staatsministerium für Wissenschaft, Forschung und Kunst
Begin 2013
End 2014
Leader Univ.-Prof. Dr. Michael Bader
Staff Alexander Breuer, Alexander Heinecke
Contact person Univ.-Prof. Dr. Michael Bader
Co-operation partner Geophysics group, Department of Earth and Environmental Sciences, University of Munich (Dr. Christian Pelties, Prof. Dr. Heiner Igel)

Brief description

SeisSol is one of the leading simulation codes for earthquake scenarios, in particular for accurate simulation of dynamic rupture processes. In the proposed project, we optimize the performance of SeisSol via a code generation approach. In a two-step procedure, the set-up of element matrices (which are used to express SeisSol's innermost kernel operations) are extracted, and optimized kernel implementations are generated (exploiting SIMD operations, register blocking, etc.) and integrated into SeisSol. Performance evaluation will be done on the SuperMUC platform.

Postdoctoral Grant Ekaterina Elts

Project type Postdoctoral grant
Funded by Bayerische Forschungsstiftung
Begin August 2008
End July 2009
Leader Univ.-Prof. Dr. Hans-Joachim Bungartz
Staff Dr. Ekaterina Elts, M.Sc
Contact person Dr. Ekaterina Elts, M.Sc
Co-operation partner -

Brief description

This grant will allow Dr. Elts to continue her work in the field of molecular dynamics at the SCCS group.

Simulation of CO2 Sequestration

Project type Strategic Partnership with the King Abdullah University of Science and Technology (KAUST)]
Funded by KAUST
Begin 2009
End 2013
Leader Univ.-Prof. Dr. Hans-Joachim Bungartz
Staff see Munich Centre of Advanced Computing
Contact person Tobias Weinzierl
Co-operation partner Prof. Dr. Dr.-Ing. habil. Arndt Bode (Computer Architecture), Prof. Dr. Martin Brokate (Numerical Mathematics and Control Theory), Prof. Dr. Drs. h.c.Karl-Heinz Hoffmann (Numerical Mathematics and Control Theory), Prof. Dr.-Ing. Michael Manhart (Hydromechanics), Prof. Dr. Michael Ulbrich (Mathematical Optimisation)

Brief description

The goal of this project is to design and investigate novel approaches to modelling and simulation of CO2 sequestration processes, in particular in the context of enhanced oil recovery. The project will involve both fine-grain simulations - with all related aspects from multi-phase schemes via numerical algorithmics to high-performance computing issues - and homogenization approaches to efficiently capture the fine-grain effects on the macro-scale. For that, groups with expertise in flow physics, mathematical modelling, numerical analysis, numerical algorithmics, optimisation and inverse problems, and high-performance computing and HPC systems join their forces. Topics addressed will cover multi-scale modelling and homogenisation, fully-resolved pore-scale simulation, constrained optimisation of the sequestration process, enhanced numerics and parallelisation, and HPC implementation.

Simulation Technology

Project type Sonderprogramm Akademischer Neuaufbau Südosteuropa
Funded by Deutscher Akademischer Austauschdienst (DAAD)
Begin September 2004
End September 2004
Leader Prof.Dr. Hans-Joachim Bungartz
Staff Dipl.-Ing. Ioan Lucian Muntean
Contact person Dipl.-Ing. Ioan Lucian Muntean

Additional information

SkaSim: Scalable HPC-Software for molecular simulation in the chemical industry

Project type BMBF support program: Application-oriented HPC-Software for supercomputers
Funded by BMBF
Begin July 2013
End June 2016
Leader Prof. Dr.-Ing. M. Resch, HLRS
Staff Univ.-Prof. Dr. Hans-Joachim Bungartz, Nikola Tchipev, M.Sc., Dipl.-Inf. Wolfgang Eckhardt
Contact person Nikola Tchipev, M.Sc.
Co-operation partner Prof. M. Resch, HLRS, Prof. D. Reith, HBRS, Dr. P. Klein Fraunhofer, ITWM, Prof. H. Hasse, TU Kaiserslautern, Dr. T. Soddemann, Fraunhofer SCAI, Prof. J. Vrabec, Uni Paderborn, BASF SE, Cray Computers Deutschland GMBH, DDBST GMBH, Eurotechnica GMBH, Solvay Fluor GMBH

Brief description

Molecular dynamics (MD) and Monte-Carlo (MC) simulations form the basis for investigating many relevant application scenarios in science and engineering. At the heart of these simulations lie physically meaningful and quantitative models of molecular interactions, requiring precise validation through state of the art ab initio calculations and experimental data. The extreme spatial and temporal resolution (individual molecules, femtoseconds) of such simulations allow for very reliable predictions of material properties, even where experiments are impossible or dangerous. However, this extreme resolution also implies substantial computational demands in order to investigate scenarios in a timely manner. The same holds true for nanofluidics: realistic insights, not obtainable experimentally, can be captured through simulation. Complex phenomena as for instance phase transitions (e.g. condensation) can be investigated on the molecular level, allowing new and more fundamental insights. However, as the dynamics of every molecule is evaluated explicitly, the number of simulated molecules needs to be considerable in order to capture the phenomena in question. Determining experimentally elusive properties of matter is attracting increasing attention from industry. Be it in process engineering, where the already highly optimized procedures can only be improved through better and more detailed data and understanding. The computational power required to generate the quantity and quality of data required is significant. Thus, only through the efficient use of cutting-edge hardware can these demands be met. However, many relevant scenarios are far from trivial to simulate at scale, e.g. coinciding fluid and gaseous phases in a highly dynamic environment as in condensation or evaporation.

However, the industrial development of new products and processes will experience a fundamental change in the coming years. Expensive and oftentimes dangerous experiments can be replaced with safe and increasingly efficient and affordable simulations. For this transition to take place, simulations need to be performed with accuracies comparable to highquality experiments. Besides the computational requirements, this calls for extremely accurate molecular models and, for complex scenarios, reliable new methodologies.

The challenges to simulate such scenarios efficiently are huge and will be addressed in SkaSim.


SFB411 - C4

Principles of aerobic biological wastewater treatment

Teilprojekt C4: Einfluss von Biofilmstruktur auf Stofftransportvorgänge in durchströmten Biofilmen

Project type Subproject of SFB 411
Funded by German Research Foundation (DFG)
Begin January 2001
End December 2003
Leader Prof.Dr. Hans-Joachim Bungartz
Staff Dipl.-Geophys. Markus Brenk
Dipl.-Inf.Univ. Ralf-Peter Mundani
Dr.rer.net Stefan Zimmer
Contact person Prof.Dr. Hans-Joachim Bungartz
Co-operation partner Lehrstuhl für Wassergüte und Abfallwirtschaft (Prof. Dr. Dr. h.c. Peter Wilderer, TU München

SP1103

Volume-oriented Modeling as a Foundation of Network-based Co-operative Planning Processes in Structural Engineering

Project type Schwerpunktprogramm 1103
Funded by German Research Foundation
Begin October 2000
End October 2006
Leader Prof.Dr. Hans-Joachim Bungartz
Staff Dr. Ralf-Peter Mundani
Contact person Prof.Dr. Hans-Joachim Bungartz
Co-operation partner Prof.Dr. E. Rank (Lehrstuhl für Bauinformatik, TU München)

Brief description

Die ungebremste Steigerung der Rechen- und Speicherleistung von Arbeitsplatzrechnern sowie neue Konzepte der geometrischen Modellierung und der numerischen Berechnungsverfahren lassen erwarten, dass in weniger als 10 Jahren ein erheblicher Teil der computergestützten Planung im konstruktiven Ingenieurbau nicht mehr an dimensionsreduzierten Modellen, sondern an streng volumenorientierten Modellen durchgeführt werden kann. Dies wird weitreichende Folgen für den gesamten Planungsprozess und insbesondere für die Integration der verschiedenen Teilmodelle mit sich bringen. Hierfür werden in diesem Forschungsvorhaben Konzepte entwickelt und deren Leistungsfähigkeit demonstriert.

Teaching Simulation Technology Goes Mobile!

HP Technology for Teaching grant

Project type HP Technology for Teaching grant
Funded by Hewlett-Packard
Begin July 2004
End May 2006
Leader Prof.Dr. Hans-Joachim Bungartz
Staff Dr.rer.net Stefan Zimmer
Contact person Dr.rer.net Stefan Zimmer


As part of HP Technology for Teaching grant, 34 TabletPCs and accompanying equipment have been donated to improve education in the field of simulation techniques at the Universität Stuttgart.

They were used in various courses in the faculties

  • Computer Science, Electical Engineering, and Information Technology (Institutes: IPVS, VIS)
  • Civil and Environmental Engineering (IWS, ISVS)
  • Aero- and Astronautics Engineering (IAG)
  • Mechanical Engineering (ITT)
  • Mathematics and Physics (IANS)

Additionally, they have been successfully used in summer schools:

  • Summer School Berlin 2004 Use Transport Data! (Sept. 6-10, 2004)
  • Summer School Simulation Technology, Constanta/Romania (Sept. 9-20, 2004)
  • Ferienakademie Sarntal/Italy (2004-2008)

Project Abstract & Goals: Simulation has turned out to be one of the key technologies in practically all fields of science and engineering. Today, a successful use of simulation methods typically requires an interdisciplinary approach and involves researchers from mathematics, informatics, and the respective field of application. Hence, the education of students in simulation technology has to reflect this transdisciplinary nature.

This project’s goal was to improve education in simulation technology by connecting courses in the related fields via a homogeneous learning and problem-solving environment by means of mobile technology.

Impacts on Student Learning: Central point in the courses that used the Tablet PCs was to create a homogeneous working environment for the participants with the same set software tools (for numerical computations, for visualization of the results, and for presentation tools) and accompanying documents.

For example, in the course teaching numerics and statistics in the computer science program, interactive exercises using Maple helped to bring “dead mathematics” alive and the classroom group that was selected for these experiment was visibly more committed than the other groups – where the use of the students’ laptops is always handicapped by the different system environments.

In seminars in the mathematics program, as another example, the students were teamed up in pairs to work out their presentation (usually involving MATLAB computations). Here, especially the possibility to combine their final report into a well structured common document was considered as a significant boost in the student’s motivation and is again greatly facilitated by the homogenous environment provided to the participants.

Between the terms, the equipment was heavily in use on summer schools, where we noticed an additional advantage of the homogeneous equipment as it facilitates the connection between summer school courses and courses from the regular program. This results in an advanced level of the presentations involving simulation software and a better flow of summer school’s results back to the home university.

Impacts on Teaching: While the design of interactive elements into a course is always a fairly big effort, we noticed that the set of Tablet PCs facilitated the process in two ways. First, we have to care about only one system which saves a lot of work (and annoyance for students and teachers in case of unforeseen technical problems). Second, and this turned out to be the main advantage of the Tablet PCs over conventional laptop computers, an interesting and unconventional system turns out to motivate students to help voluntarily in the design of the course materials, bringing in a lot of ideas of their own. We found that the equipment was very helpful to remove the “glass wall” in the classrooms between teaching staff and students.

Technology Integration: The Tablet PCs were used in several configurations tailored to the specific course – with Windows or Linux operating systems and a selection of software for scientific computing (especially Maple and MATLAB, but also department-specific special software). The different configurations were stored as images on a server at the IPVS, where a set of Tablet PCs with the required configuration could easily be prepared.

Virtual Arabia

Project type Strategic Partnership with the King Abdullah University of Science and Technology (KAUST)]
Funded by KAUST
Begin 2009
End 2013
Leader Tobias Weinzierl
Staff see Munich Centre of Advanced Computing
Contact person Univ.-Prof. Dr. Hans-Joachim Bungartz
Co-operation partner Prof. Dr. Dr.-Ing. habil. Arndt Bode (Computer Architecture), Prof. Gudrun Klinker, Ph.D. (Augmented Reality), Prof. Dr. Ernst Rank (Computation in Engineering), Prof. Dr. Rüdiger Westermann (Computer Graphics & Visualization)

Brief description

The goal of this project is to develop a virtual environment for the interactive visual exploration of Saudi Arabia. In contrast to virtual globe viewers like Google Earth, this environment will allow the user to look both above and underneath the earth surface in an integrated way. It will, thus, provide interactive means for the visual exploration of 3D geological structures and dynamic seismic processes as well as atmospheric processes and effects or built or planned infrastructure. The specific techniques required to support such functionality will be integrated into a generic infrastructure for visual computing. The project will cooperate with the KAUST 3D Modelling and Visualisation Centre and the KAUST Computational Earth Sciences Centre.

vhb - CSE

Development of courses for the Virtuelle Hochschule Bayern

Project type -
Funded by Virtuelle Hochschule Bayern
Begin 2001
End open end
Leader Prof.Dr. Hans-Joachim Bungartz
Prof.Dr. Christoph Zenger
Staff Dr.rer.nat. Michael Bader
Contact person Dr.rer.nat. Michael Bader

Brief description

Zum Wintersemester 2001/2002 wurde an der TUM das interdisziplinäre, englischsprachige Master-Programm Computational Science and Engineering (CSE) als Aufbaustudiengang für Natur- und Ingenieurwissenschaftler eingeführt. Als Besonderheit sieht die CSE-Studienordnung vor, dass einzelne Module des Studiengangs auch von Instituten anderer Hochschulen eingebracht werden können, u.a. als virtuelle Lehreinheit im Rahmen der Virtuellen Hochschule Bayern (vhb).

Das Angebot virtueller Lehreinheiten soll gewährleisten, dass teilnehmende Studenten von der CSE-Kompetenz in ganz Bayern profitieren können. Darüber hinaus soll ein hochschulübergreifendes zeitgemäßes Lehrangebot zum Thema High Performance Computing (HPC) und CSE aufgebaut werden, auf das auch andere Universitäten bei Einführung entsprechender Studiengänge oder Vertiefungsfächer zugreifen können.

Im Rahmen dieses Projekts sollen zunächst zwei ausgewählte Module zur virtuellen Vorlesung bzw. virtuellen Übung ausgebaut werden: das Modul "Introduction to Scientific Computing", sowie das Modul "Modelling and

Simulation in Continuum Mechanics".