Scientific Computing II - Summer 16: Difference between revisions

From Sccswiki
Jump to navigation Jump to search
(Created page with "{{Lecture | term = Summer 2016 | lecturer = Michael Bader | timeplace = tba :Tutorial: tba | credits = 6 SWS (4V + 2Ü) / 8 Credits | audience = see [https://campus.tum.de...")
 
No edit summary
 
(32 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Lecture
{{Lecture
| term = Summer 2016
| term = Summer 2016
| lecturer = [[Michael Bader]]
| lecturer = [[Michael Bader|Prof. Dr. Michael Bader]]
| timeplace = tba
| timeplace = Monday 14-16 (MI HS 2); first lecture: Mon, Apr 11
:Tutorial: tba
| credits = 2V + 2Ü / 5 Credits
| credits = 6 SWS (4V + 2Ü) / 8 Credits
| audience = Computational Science and Engineering, 2nd semester <br> others: [https://campus.tum.de/tumonline/WBMODHB.wbShowMHBReadOnly?pKnotenNr=476730&pOrgNr=14189 see module description]
| audience = see [https://campus.tum.de/tumonline/WBMODHB.wbShowMHBReadOnly?pKnotenNr=456346&pOrgNr=14189 module description (IN2001)] in TUMonline
| tutorials = [[Carsten Uphoff, M.Sc.]] <br> Tuesdays 10-12, lecture room MI 02.07.023 (from Apr 12)
| tutorials = [[Kilian_Röhner, M.Sc.|Kilian Röhner]], [[Denis Jarema, M.Sc. (hons)|Denis Jarema]]
| exam = written exam, time/day see below
| exam = repeat exam (written) on '''Thursday, Sep 24, 14.00 (MW 0350)''', 1 handwritten DinA4 page (both sides) is the only allowed helping material
| tumonline = [https://campus.tum.de/tumonline/LV.detail?clvnr=950238630 Scientific Computing II]
| tumonline = [https://campus.tum.de/tumonline/wblv.wbShowLvDetail?pStpSpNr=950180532 Algorithms of Scientific Computing]
}}
}}


== News & Announcements ==
= Announcements =
* '''Extra session for questions:''' on Tuesday, July 26, in the tutorial slot (10-12 in room MI 02.07.023); opportunity to ask questions on all exam topics covered in the lectures


* due to the student assembly, the '''tutorial on Apr 29 will be skipped'''
= Contents =
<!--
* repeat exam review: date ('''Mo October 28''', 2013), time ('''13.00-14.00'''), room ('''02.07.023''')
* Instead of a last tutorial, there will be a Q&A session with both tutors on Wednesday, July 17, 10-11.30am
* The time and place of the <b>exam</b> are announced above.
* On July 10/11, lecture and tutorial will be switched:
** '''July 10, 10-12: lecture in MI 02.07.023'''
** '''July 11, 10-12: tutorial in MI 01.10.011'''
* The '''Exam Review''' will take place on August 7th, 1pm - 2pm in room MI 02.05.058.
* Wed, Oct 15, '''10.15 - 11.00''' (MI 02.05.058)
* '''June 2&4: Change of lecture and tutorial'''
** Monday, June 2: tutorial in room MI 02.07.023
** Wednesday, June 4: lecture in room MI 02.07.023
* '''Easter Break:'''
** the lectures on Fri, Apr 18, and Mon, Apr 21, will be cancelled due to the Easter holidays
** the tutorial on Wed, Apr 23, will be skipped due to the student assembly (Math/Phys/Info)
-->


== What's ASC about? ==
This course provides a deeper knowledge in two important fields of scientific computing:


Many applications in computer science require methods of (prevalently numerical) mathematics - especially in science and engineering, of course, but as well in surprisingly many areas that one might suspect to be directly at the heart of computer science:
* iterative solution of large sparse systems of linear equations:
** relaxation methods
** multigrid methods
** steepest descent
** conjugate gradient methods
** preconditioning
* molecular dynamics simulations
** particle-based modelling (n-body simulation)
** algorithms for efficient force calculation
** parallelisation
The course is conceived for students in computer science, mathematics, or some field of science or engineering who already have a certain background in the numerical treatment of (partial) differential equations.


Consider, for example, Fourier and wavelet transformations, which are indispensable in image processing and image compression. Space filling curves (which have been considered to be "topological monsters" and a useless theoretical bauble at the end of the 19th century) have become important methods used for parallelization and the implementation of data bases. Numerical methods for minimization and zero-setting are an essential foundation of Neural Networks in machine learning.
== Lecture Slides ==


Essentially, these methods come down to the question of how to represent and process information or data as (multi-dimensional) continuous functions.
Lecture slides will be published here as soon as they become available. For future lectures, the respective slides from summer 2015 will be linked.
Algorithms of Scientific Computing (former Algorithmen des Wissenschaftlichen Rechnens) provides a generally understandable and algorithmically oriented introduction into the foundations of such mathematical methods. Topics are:
* [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss16/scicomp2_overview.pdf Introduction], [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss16/smoothing.pdf Relaxation Methods] (Apr 11, 18)
 
* [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss16/multigrid.pdf Multigrid Methods] (Part I: Apr 18; Part II: Apr 25, May 2, Part III: May 2, 9)
* The fast Fourier transformation (FFT) and some of its variants:
** [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss13/MG-illustration.pdf some multigrid animations] (more peas!)
** FCT (Fast Cosine Transform), real FFT, Application for compression of video and audio data
** if you're interested: [http://wwwhome.math.utwente.nl/~botchevma/fedorenko/index.php On the history of the Multigrid method creation] (website article by R.P. Fedorenko)
* Space filling curves (SFCs):
* [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss16/conjugate.pdf Steepest Descent and Conjugate Gradient Methods] (Part I&II: May 23, Part III: May 30 & Jun 6)
** Construction and properies of SFCs
** additional material: [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss15/quadratic_forms.mws Maple worksheet quadratic_forms.mws], also as [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss15/quadratic_forms.pdf PDF]
** Application for parallelization and to linearize multidimensional data spaces in data bases
** additional material: [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss15/conjugate_gradient.mws Maple worksheet conjugate_gradient.mws], also as [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss15/conjugate_gradient.pdf PDF]
* Hierarchical and recursive methods in scientific computing
<!--
** From Archimede's quadrature to the hierarchical basis
* [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss15/biros-lecture-nbody-tum.pdf Guest lecture by George Biros on n-body methods]
** Cost vs. accuracy
-->
** Sparse grids, wavelets, multi-grid methods
* Molecular Dynamics:
 
** [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss16/moldyn_intro.pdf Molecular Dynamics (Intro)] (Jun 13)
== Material ==
** [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss16/moldyn_model.pdf Molecular Dynamics (Modelling)] (Jun 13)
 
** [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss16/moldyn_numerics.pdf Molecular Dynamics (Time-Stepping)] (Jun 20)
Lecture slides and worksheets will be published here as soon as they become available.
** [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss16/moldyn_forces.pdf Molecular Dynamics (Force Computation: Linked Cell, Barnes-Hut, Fast Multipole)] (Jun 20, 27; Jul 4)
For future lectures, the respective slides from summer 2014 will be linked.
*** additional material: [http://epubs.siam.org/doi/abs/10.1137/0913055 article by Anderson: An implementation of the fast multipole method without multipoles] (PDF can be accessed via LRZ proxy or after logging in to TUM's e-library)
 
* [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/introduction.pdf Introduction] - Apr 13
 
=== Fast Fourier Transform ===
 
* [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/dft.pdf Discrete Fourier Transform (DFT)] - Apr 17
* [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/fft.pdf Fast Fourier Transform (FFT)] - Apr 17, 20
** Further Material: [http://www.fftw.org/ Website of FFTW] (a fast library to compute the DFT); in particular, see the chapter on [http://cnx.org/content/m16336/latest/ Implementing FFTs in Practice] by the FFTW developers
* [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/rdft.pdf FFT on real data] - Apr 24, 27
** additional info: paper [http://www.jstor.org/stable/2008098 Paul N. Swarztrauber - Symmetric FFTs] (access via LRZ proxy necessary, or see the [http://www.cisl.ucar.edu/css/staff/pauls/papers/symfft/mscpt.pdf preprint on the NCAR website])
* [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/dct.pdf Quarter-Wave-Fourier Transform and Discrete Cosine Transform] - Apr 27, May 4
** [http://www.mathworks.com/matlabcentral/fileexchange/4328-jpeg-compression matlab central: jpeg compression]
** an embarrassingly simple simple JPEG-simulator [http://www5.in.tum.de/lehre/vorlesungen/asc/ss12/JPEG_Sim.zip (Java program)]
* [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/dst.pdf Discrete Sine Transform] - May 4
* [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/fastPoisson.pdf Fast Poisson Solvers] - May 8
 
=== Hierarchical Methods ===
 
* [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/data_mining.pdf Towards Data Mining: Approximation and Classification] - May 11
* [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/archimedes_1d.pdf Archimedes' Quadrature 1D] - May 15
* [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/hierbas_1D.pdf Hierarchical Basis in 1D] - May 18
* [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/wavelets.pdf Wavelets] - May 18, 22, 27
* [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/fem_asc.pdf Finite Element Methods (parts I-III)] - May 29
** additional material: [http://www5.in.tum.de/lehre/vorlesungen/asc/ss13/Maple/fe.mws Maple worksheet for Poisson-FEM] ([http://www5.in.tum.de/lehre/vorlesungen/asc/ss12/Maple/fe.pdf and as PDF])
 
=== Space-Filling Curves ===
 
* [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/sfc_orders.pdf From Quadtrees to Space-Filling Order] - June 1
** [http://www5.in.tum.de/lehre/vorlesungen/asc/ss14/Hilbert_Plotter.ipynb IPython Notebook script for Hilbert curve grammar]
* [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/sfc_mapping.pdf Hilbert Curve (Construction, Definition, and Arithmetisation)] - Jun 5
** [http://www5.in.tum.de/lehre/vorlesungen/asc/ss14/sfc_hilbert_arith.ipynb IPython Notebook script for Hilbert curve arithmetization]
* [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/sfc_3Dcurves.pdf 2D and 3D Space-filling Curves] - Jun 8, 12
* [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/sfc_parallel.pdf Space-filling curves and parallelisation] - Jun 15, 19
** [http://www5.in.tum.de/lehre/vorlesungen/asc/ss14/sfc_hilbert_plotter_adp.ipynb IPython Notebook script Hilbert curve on a quadtree]
 
=== Sparse Grids ===
 
* [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/archimedes_dDim.pdf Archimedes Quadrature in d Dimensions] - Jun 22, 26
** further material (from lecture in 2012): [http://www5.in.tum.de/lehre/vorlesungen/asc/ss12/Maple/archimedes_dDim.mws Maple worksheet for d-Dim. archimedes] ([http://www5.in.tum.de/lehre/vorlesungen/asc/ss12/Maple/archimedes_dDim.pdf and as PDF])
* [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/hierarch_dDim.pdf Hierarchical Basis in d Dimensions] - Jun 26, 29
** [http://www5.in.tum.de/lehre/vorlesungen/asc/ss13/hierarch_integral_representation.pdf "separate proof"] for estimating surpluses (outlook, Jun 29)
* [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/sparsegrids_algo.pdf Data Structures for Sparse Grids] - Jul 6
* [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/fem_asc.pdf Finite Element Methods (part IV)] - Jul 10
 
== Worksheets and Solutions ==
{|class=wikitable
|-
! '''Number''' !! '''Topic''' !! '''Worksheet''' !! '''Date''' !! '''Solution'''
|-
| 1 || Discrete Fourier Transform I || [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt1/blatt1.pdf Worksheet 1] [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt1/Python.Introduction.pdf Python Introduction] || 15.4.2015 || [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt1/solution1.pdf solution 1] [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt1/Worksheet_1.ipynb IPyNb solution 1]
 
|-
| 2 || Discrete Fourier Transform II || [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt2/blatt2.pdf Worksheet 2] [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt2/Worksheet_2-Template.ipynb IPyNb template 2] || 22.4.2015 || [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt2/solution2.pdf solution 2] [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt2/Worksheet_2.ipynb IPyNb solution 2]
|-
| 3 || Discrete Cosine Transformation || [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt3/blatt3.pdf Worksheet 3] [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt3/Worksheet_3-Template.ipynb IPyNb template 3] || 6.5.2015 || [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt3/solution3.pdf solution 3] [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt3/Worksheet_3.ipynb IPyNb solution 3]
|-
| 4 || Discrete Sine Transformation <br> Numerical Quadrature for One-dimensional Functions || [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt4/blatt4_a.pdf Worksheet 4a] <br> [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt4/blatt4_b.pdf Worksheet 4b] [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt4/Worksheet_4b.tar.gz py/ipynb] || 13.5.2015 || [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt4/solution4_a.pdf solution 4a] [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt4/Worksheet_4b-solution.tar.gz solution 4b]
|-
| 5 || Archimedes Quadrature and Haar Wavelets || [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt5/blatt5.pdf Worksheet 5] [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt5/Worksheet_5.tar.gz py/ipynb] || 20.5.2015 || [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt5/Worksheet_5_solution.tar.gz solution 5 Archimedes] [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt5/solution_5_haar.pdf solution 5 Haar Wavelets]
|-
| 7 || Grammars for Space-filling Curves || [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt7/blatt7.pdf Worksheet 7] [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt7/Worksheet_7-Template.ipynb IPyNb template 7] || 3.6.2015 || [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt7/solution7.pdf solution 7] [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt7/Worksheet_7.ipynb IPyNb solution 7]
|-
| 8 ||  Arithmetization of Space-filling Curves || [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt8/blatt8.pdf Worksheet 8] [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt8/Worksheet_8-Template.ipynb IPyNb template 8] || 10.6.2015 || [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt8/solution8.pdf solution 8] [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt8/Worksheet_8.ipynb IPyNb solution 8]
|-
| 9 || Refinement Trees and Parallelization with Space-Filling Curves || [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt9/blatt9.pdf Worksheet 9] [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt9/Worksheet_9-Template.ipynb IPyNb template 9] || 17.6.2015 || [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt9/solution9.pdf solution 9] [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt9/Worksheet_9.ipynb IPyNb solution 9]
|-
| 10 || Multi-dimensional Quadrature || [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt10/blatt10.pdf Worksheet 10], [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt10/arch2d_exercise.ods exercise10.ods] || 24.6.2015 || [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt10/arch2d.pdf solution10.pdf]
|-
| 11 || Hierarchization in Higher Dimensions, Spatial Adaptivity || [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt11/blatt11.pdf Worksheet 11], [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt11/Worksheet_11.tgz py/ipynb] || 1.7.2015 || [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt11/Worksheet_11_2015_solution.py.tar.gz IPyNb solution 11] [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt11/solution11.pdf Solution Ex. 2]
|-
| 12 || Spatial Adaptivity (Implementation), Combination Technique || [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt12/blatt12.pdf Worksheet 12], [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt12/Worksheet_12_2015.tar.gz py/ipynb] || 8.7.2015 || [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt12/Worksheet_12_2015_solution.tar.gz IPyNb solution 12] [http://www5.in.tum.de/lehre/vorlesungen/asc/ss15/blatt12/solution12.pdf Solution Ex. 2]
|}
 
=== IPython Notebook ===
* If you want to use a local installation of IPython Notebook on your laptop or home computer, just refer to [http://ipython.org/notebook.html the IPython Notebook website] on how to install IPython Notebook on Linux, Windows or MAC platforms
** If you install IPython Notebook for Windows, it might happen that starting it from the "Start" menue will open an IPython server website, but that you cannot create or import any new Python notebooks. In that case, try to start IPython Notebook from the command line via "ipython notebook --notebook-dir=.\" (from the directory where you want to store the Python notebooks); you can also create a batch file for this ([http://www5.in.tum.de/lehre/vorlesungen/asc/ss13/startNotebook.bat download example], place it in the desired directory).
 
== Repeat Exam ==
<!-- * exam review: Tue, Aug 4, '''10.00 - 11.30''' (MI 02.05.058) -->
* type: written exam, duration: 90 min
* time, date, room: '''Thu, Sep 24''', 2015, '''14.00-15.45''' ('''MW 0350''')
** note that the exam will start precisely on 14.00; please be in the exam room '''by 13.45''', at the latest!
* '''please make sure that you register in TUMonline'''
* helping material:
** you may use one '''hand-written''' sheet of paper (size A4, front and back may be used)
** no other helping material of any kind is allowed


== Literature and Additional Material ==
== Exercises ==
See [//www.moodle.tum.de/course/view.php?id=25898 Moodle] course.


Books that are labeled as "available as e-book" can be accessed as e-book vi the TUM library - see the [http://www.ub.tum.de/ebooks ebooks website] of the library for details how to access the books.
= Repeat Exam =


=== Fast Fourier Transform: ===
* '''Exam Review''': Wednesday, Oct 26, 15.00-17.00 (office E.2.048 in Leibniz Supercomputing Centre, Boltzmannstr. 1)
The lecture is oriented on:
* written exam
* ''W.L. Briggs, Van Emden Henson'': [http://epubs.siam.org/doi/book/10.1137/1.9781611971514 The DFT - An Owner's Manual for the Discrete Fourier Transform], SIAM, 1995 (available as e-book)
* Date: '''Monday, Oct 10'''
* ''Thomas Huckle, Stefan Schneider'': Numerische Methoden - Eine Einführung für Informatiker, Naturwissenschaftler, Ingenieure und Mathematiker, Springer-Verlag, Berlin-Heidelberg, 2.Auflage 2006 (German only)
* Time: '''8.00-9.45''' - Please make sure to be in the lecture hall by 7.45, as the exam will start precisely at 8.00.
* ''Charles van Loan'': [http://epubs.siam.org/doi/book/10.1137/1.9781611970999 Computational Frameworks for the Fast Fourier Transform], SIAM, 1992 (available as e-book)
* Place: '''Interim 2''' (black building in front of math/informatics)
* material: '''no helping material of any kind is allowed during the exam'''
* Topics: everything that was covered in the lectures and tutorials <!-- (except the last lecture, on long-range forces, July 17) -->
<!-- * '''extra session for questions''' concerning the exam on '''Tue, July 26, from 10.15''' in room MI 02.07.023 -->


=== Hierarchical Methods and Sparse Grids ===
<B> Please make sure that you are registered for the exam via TUMOnline!</B>
* [http://www5.in.tum.de/lehre/vorlesungen/algowiss2/Bungartz_HierVerf.ps.gz Skript of H.-J. Bungartz for the lecture "Rekursive Verfahren und hierarchische Datenstrukturen in der numerischen Analysis"] (German only)
* [http://www5.in.tum.de/pub/bungartz04sparse.pdf General overview paper on Sparse Grids]
* Chapter on Sparse Grids in [http://www5.in.tum.de/pub/pflueger10spatially.pdf this book]


=== Wavelets ===
Old exams are available on the websites of the last years (note that the curriculum of the lecture has slightly changed since then!):
* ''E. Aboufadel, S. Schlicker'': [http://faculty.gvsu.edu/aboufade/web/wavelets/book.htm Discovering Wavelets], Whiley, New York, 1999 (available as e-book).
[http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss11/exam.pdf]
** [http://faculty.gvsu.edu/aboufade/web/wavelets/tutorials.htm Collection of Wavelet tutorials] (maintained by E. Aboufadel and S. Schlicker)
[http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss10/exam.pdf]
* ''[http://people.uwec.edu/walkerjs/ J.S. Walker]'': [http://people.uwec.edu/walkerjs/Primer/ A Primer on Wavelets and their Scientific Applications, Second Edition], Chapman and Hall/CRC, 2008.
[http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss08/exam.pdf]
* ''[http://people.uwec.edu/walkerjs/ J.S. Walker]'': Wavelet-based Image Compression ([http://people.uwec.edu/walkerjs/media/WBIP.pdf download as PDF])


=== Space-filling Curves: ===
= Literature =
* ''Michael Bader'': [http://www.space-filling-curves.org Space-Filling Curves - An introduction with applications in scientific computing], Texts in Computational Science and Engineering 9, Springer-Verlag, 2012<br>( [http://link.springer.com/book/10.1007/978-3-642-31046-1/page/1 available as eBook], also in the TUM library)
* ''Hans Sagan'': Space-Filling Curves, Springer-Verlag, 1994


* William L. Briggs, Van Emden Henson, Steve F. McCormick. A Multigrid Tutorial. Second Edition, SIAM, 2000 (available as eBook in the TUM library)
* Ulrich Trottenberg, Cornelis Oosterlee, Anton Schüller. Multigrid. Elsevier, 2001 (available as eBook in the TUM library)
* [http://www.cs.cmu.edu/~jrs/ J.R. Shewchuk]. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain ([http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf download as PDF]). 1994.
* V. Eijkhout: [http://tacc-web.austin.utexas.edu/veijkhout/public_html/istc/istc.html Introduction to High-Performance Scientific Computing] (textbook, available as PDF on the website)
* M. Griebel, S. Knapek, G. Zumbusch, and A. Caglar. Numerical simulation in molecular dynamics. Springer, 2007  (available as eBook in the TUM library)
* M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press, 2003.
* D. Frenkel and B. Smith. Understanding Molecular Simulation from Algorithms to Applications. Academic Press (2nd ed.), 2002.
* R. J. Sadus. Molecular Simulation of Fluids; Theory, Algorithms and Object-Orientation. Elsevier, 1999.
* D. Rapaport. The art of molecular dynamics simulation. Cambridge University Press, 1995.


[[Category:Teaching]]
[[Category:Teaching]]

Latest revision as of 08:56, 19 October 2016

Term
Summer 2016
Lecturer
Prof. Dr. Michael Bader
Time and Place
Monday 14-16 (MI HS 2); first lecture: Mon, Apr 11
Audience
Computational Science and Engineering, 2nd semester
others: see module description
Tutorials
Carsten Uphoff, M.Sc.
Tuesdays 10-12, lecture room MI 02.07.023 (from Apr 12)
Exam
written exam, time/day see below
Semesterwochenstunden / ECTS Credits
2V + 2Ü / 5 Credits
TUMonline
Scientific Computing II



Announcements

  • Extra session for questions: on Tuesday, July 26, in the tutorial slot (10-12 in room MI 02.07.023); opportunity to ask questions on all exam topics covered in the lectures

Contents

This course provides a deeper knowledge in two important fields of scientific computing:

  • iterative solution of large sparse systems of linear equations:
    • relaxation methods
    • multigrid methods
    • steepest descent
    • conjugate gradient methods
    • preconditioning
  • molecular dynamics simulations
    • particle-based modelling (n-body simulation)
    • algorithms for efficient force calculation
    • parallelisation

The course is conceived for students in computer science, mathematics, or some field of science or engineering who already have a certain background in the numerical treatment of (partial) differential equations.

Lecture Slides

Lecture slides will be published here as soon as they become available. For future lectures, the respective slides from summer 2015 will be linked.

Exercises

See Moodle course.

Repeat Exam

  • Exam Review: Wednesday, Oct 26, 15.00-17.00 (office E.2.048 in Leibniz Supercomputing Centre, Boltzmannstr. 1)
  • written exam
  • Date: Monday, Oct 10
  • Time: 8.00-9.45 - Please make sure to be in the lecture hall by 7.45, as the exam will start precisely at 8.00.
  • Place: Interim 2 (black building in front of math/informatics)
  • material: no helping material of any kind is allowed during the exam
  • Topics: everything that was covered in the lectures and tutorials

Please make sure that you are registered for the exam via TUMOnline!

Old exams are available on the websites of the last years (note that the curriculum of the lecture has slightly changed since then!): [1] [2] [3]

Literature

  • William L. Briggs, Van Emden Henson, Steve F. McCormick. A Multigrid Tutorial. Second Edition, SIAM, 2000 (available as eBook in the TUM library)
  • Ulrich Trottenberg, Cornelis Oosterlee, Anton Schüller. Multigrid. Elsevier, 2001 (available as eBook in the TUM library)
  • J.R. Shewchuk. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain (download as PDF). 1994.
  • V. Eijkhout: Introduction to High-Performance Scientific Computing (textbook, available as PDF on the website)
  • M. Griebel, S. Knapek, G. Zumbusch, and A. Caglar. Numerical simulation in molecular dynamics. Springer, 2007 (available as eBook in the TUM library)
  • M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press, 2003.
  • D. Frenkel and B. Smith. Understanding Molecular Simulation from Algorithms to Applications. Academic Press (2nd ed.), 2002.
  • R. J. Sadus. Molecular Simulation of Fluids; Theory, Algorithms and Object-Orientation. Elsevier, 1999.
  • D. Rapaport. The art of molecular dynamics simulation. Cambridge University Press, 1995.