Scientific Computing II - Summer 16: Difference between revisions

From Sccswiki
Jump to navigation Jump to search
Line 32: Line 32:
* [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss16/scicomp2_overview.pdf Introduction], [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss16/smoothing.pdf Relaxation Methods] (Apr 11, 18)
* [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss16/scicomp2_overview.pdf Introduction], [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss16/smoothing.pdf Relaxation Methods] (Apr 11, 18)
* [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss15/multigrid.pdf Multigrid Methods] <!--(Part I: Apr 20, 24; Part II: Apr 24, May 4; Part III: May 11, 18)-->
* [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss15/multigrid.pdf Multigrid Methods] <!--(Part I: Apr 20, 24; Part II: Apr 24, May 4; Part III: May 11, 18)-->
** [http://wwwhome.math.utwente.nl/~botchevma/fedorenko/index.php On the history of the Multigrid method creation] (website article by R.P. Fedorenko)
** [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss13/MG-illustration.pdf some multigrid animations] (more peas!)
** [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss13/MG-illustration.pdf some multigrid animations]
** if you're interested: [http://wwwhome.math.utwente.nl/~botchevma/fedorenko/index.php On the history of the Multigrid method creation] (website article by R.P. Fedorenko)
* [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss15/conjugate.pdf Steepest Descent and Conjugate Gradient Methods] <!--(Part I: May 18, Part II: Jun 1, Part II: Jun 8)-->
* [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss15/conjugate.pdf Steepest Descent and Conjugate Gradient Methods] <!--(Part I: May 18, Part II: Jun 1, Part II: Jun 8)-->
** additional material: [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss15/quadratic_forms.mws Maple worksheet quadratic_forms.mws], also as [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss15/quadratic_forms.pdf PDF]
** additional material: [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss15/quadratic_forms.mws Maple worksheet quadratic_forms.mws], also as [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss15/quadratic_forms.pdf PDF]

Revision as of 12:47, 10 April 2016

Term
Summer 2016
Lecturer
Prof. Dr. Michael Bader
Time and Place
Monday 14-16 (MI HS 2); first lecture: Mon, Apr 11
Audience
Computational Science and Engineering, 2nd semester
others: see module description
Tutorials
Carsten Uphoff, M.Sc.
Tuesdays 10-12, lecture room MI 02.07.023 (from Apr 12)
Exam
written exam, time/day t.b.a.
Semesterwochenstunden / ECTS Credits
2V + 2Ü / 5 Credits
TUMonline
Scientific Computing II



Contents

This course provides a deeper knowledge in two important fields of scientific computing:

  • iterative solution of large sparse systems of linear equations:
    • relaxation methods
    • multigrid methods
    • steepest descent
    • conjugate gradient methods
    • preconditioning
  • molecular dynamics simulations
    • particle-based modelling (n-body simulation)
    • algorithms for efficient force calculation
    • parallelisation

The course is conceived for students in computer science, mathematics, or some field of science or engineering who already have a certain background in the numerical treatment of (partial) differential equations.

Lecture Slides

Lecture slides will be published here as soon as they become available. For future lectures, the respective slides from summer 2015 will be linked.

Literature

  • William L. Briggs, Van Emden Henson, Steve F. McCormick. A Multigrid Tutorial. Second Edition, SIAM, 2000 (available as eBook in the TUM library)
  • Ulrich Trottenberg, Cornelis Oosterlee, Anton Schüller. Multigrid. Elsevier, 2001 (available as eBook in the TUM library)
  • J.R. Shewchuk. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain (download as PDF). 1994.
  • V. Eijkhout: Introduction to High-Performance Scientific Computing (textbook, available as PDF on the website)
  • M. Griebel, S. Knapek, G. Zumbusch, and A. Caglar. Numerical simulation in molecular dynamics. Springer, 2007 (available as eBook in the TUM library)
  • M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press, 2003.
  • D. Frenkel and B. Smith. Understanding Molecular Simulation from Algorithms to Applications. Academic Press (2nd ed.), 2002.
  • R. J. Sadus. Molecular Simulation of Fluids; Theory, Algorithms and Object-Orientation. Elsevier, 1999.
  • D. Rapaport. The art of molecular dynamics simulation. Cambridge University Press, 1995.