Numerical Programming I - Winter 08: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 30: | Line 30: | ||
= Lecture Notes = | = Lecture Notes = | ||
(Material | (Material will be updated throughout the semester) | ||
* [http://www5.in.tum.de/lehre/vorlesungen/num_prog_cse/ws08/slides/handout_intro.pdf Introduction and Literature] | * [http://www5.in.tum.de/lehre/vorlesungen/num_prog_cse/ws08/slides/handout_intro.pdf Introduction and Literature] | ||
* [http://www5.in.tum.de/lehre/vorlesungen/num_prog_cse/ws08/slides/handout_01.pdf Chapter 1:] Foundations of Numerics from Advanced Mathematics | * [http://www5.in.tum.de/lehre/vorlesungen/num_prog_cse/ws08/slides/handout_01.pdf Chapter 1:] Foundations of Numerics from Advanced Mathematics | ||
* [http://www5.in.tum.de/lehre/vorlesungen/num_prog_cse/ws08/slides/handout_02.pdf Chapter 2:] Motivation and Introduction | |||
* [http://www5.in.tum.de/lehre/vorlesungen/num_prog_cse/ws08/slides/handout_02.pdf Chapter 2:] | * [http://www5.in.tum.de/lehre/vorlesungen/num_prog_cse/ws08/slides/handout_03.pdf Chapter 3:] Interpolation | ||
Motivation and Introduction | * [http://www5.in.tum.de/lehre/vorlesungen/num_prog_cse/ws08/slides/handout_04.pdf Chapter 4:] Numerical Quadrature | ||
* [http://www5.in.tum.de/lehre/vorlesungen/num_prog_cse/ws08/slides/handout_05.pdf Chapter 5:] Direct Methods for Solving Linear Systems of Equations | |||
* [http://www5.in.tum.de/lehre/vorlesungen/num_prog_cse/ws08/slides/handout_03.pdf Chapter 3:] | * [http://www5.in.tum.de/lehre/vorlesungen/num_prog_cse/ws08/slides/handout_06.pdf Chapter 6:] The Symmetric Eigenvalue Problem | ||
Interpolation | * [http://www5.in.tum.de/lehre/vorlesungen/num_prog_cse/ws08/slides/handout_07.pdf Chapter 7:] Iterative Methods: Roots and Optima | ||
* [http://www5.in.tum.de/lehre/vorlesungen/num_prog_cse/ws08/slides/handout_08.pdf Chapter 8:] Ordinary Differential Equations | |||
* [http://www5.in.tum.de/lehre/vorlesungen/num_prog_cse/ws08/slides/handout_04.pdf Chapter 4:] | |||
Numerical Quadrature | |||
* [http://www5.in.tum.de/lehre/vorlesungen/num_prog_cse/ws08/slides/handout_05.pdf Chapter 5:] | |||
Direct Methods for Solving Linear Systems of Equations | |||
* [http://www5.in.tum.de/lehre/vorlesungen/num_prog_cse/ws08/slides/handout_06.pdf Chapter 6:] | |||
The Symmetric Eigenvalue Problem | |||
* [http://www5.in.tum.de/lehre/vorlesungen/num_prog_cse/ws08/slides/handout_07.pdf Chapter 7:] | |||
Iterative Methods: Roots and Optima | |||
* [http://www5.in.tum.de/lehre/vorlesungen/num_prog_cse/ws08/slides/handout_08.pdf Chapter 8:] | |||
Ordinary Differential Equations | |||
Revision as of 11:01, 21 July 2008
- Term
- Winter 08
- Lecturer
- Univ.-Prof. Dr. Hans-Joachim Bungartz
- Time and Place
- t.b.a., room 02.07.023, first lecture: t.b.a.
- Audience
- Computational Science and Engineering, 1st semester
- Tutorials
- t.b.a.
- Exam
- t.b.a.
- Semesterwochenstunden / ECTS Credits
- 6 SWS / 8 Credits
- TUMonline
- {{{tumonline}}}
Contents
This course provides an overview of numerical algorithms. Topics are:
- Floating point arithmetics
- Solving Linear systems
- Interpolation
- Quadrature
- Eigenvalue problems
- Basics of iterative methods
- Basics of numerical methods for ordinary differential equations
The course will start with a short revision of mathematical foundations for numerical algorithms.
Lecture Notes
(Material will be updated throughout the semester)
- Introduction and Literature
- Chapter 1: Foundations of Numerics from Advanced Mathematics
- Chapter 2: Motivation and Introduction
- Chapter 3: Interpolation
- Chapter 4: Numerical Quadrature
- Chapter 5: Direct Methods for Solving Linear Systems of Equations
- Chapter 6: The Symmetric Eigenvalue Problem
- Chapter 7: Iterative Methods: Roots and Optima
- Chapter 8: Ordinary Differential Equations
- Introduction - Scientific Computing as a Discipline
- Oct
- slides, handout
- Fibonacci's Rabbits, Classification of Models
- Oct
- slides, handout
- Continous Population Models I - Single Species Models
- Nov
- slides
- Maple worksheet: popmodel.mws
- Continous Population Models II & III - Systems of ODE, Analysis of ODE Models
- slides, handout population models
- Maple worksheets: lotkavolt.mws, dirfields.mws
- Numerical Methods for ODE
- Nov
- slides, handout
- Maple worksheet: numerics_ode.mws
- Discrete Models for the Heat Equation
- Dec
- slides, handout
- Maple worksheet: poisson2D.mws
- Heat Equation - Analytical and Numerical Solution
- Dec
- slides, handout
- Maple worksheets: Fourier's method: heat1D_four.mws, Discretisation: heat1D_disc.mws, heat1D_impl.mws
- Additional material: Neumann stability (worksheet with solution), discrete energy (handout)
Exam
A written exam will be offered at the end of the lecture period.
Literature
- A.B. Shiflet and G.W. Shiflet: Introduction to Computational Science, Princeton University Press
- Boyce, DiPrima: Elementary Differential Equations and Boundary Value Problems, Wiley, 1992 (5th edition)
- Golub, Ortega: Scientific Computing: An Introduction with Parallel Computing, Academic Press, 1993
- Tveito, Winther: Introduction to Partial Differential Equations - A Computational Approach, Springer, 1998
- Stoer, Bulirsch: Introduction to Numerical Analysis, Springer, 1996
- Hackbusch: Elliptic Differential Equations - Theory and Numerical Treatment, Springer, 1992