Numerical Programming I - Winter 08: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 33: | Line 33: | ||
* [http://www5.in.tum.de/lehre/vorlesungen/num_prog_cse/ws08/slides/handout_intro.pdf Introduction and Literature] | * [http://www5.in.tum.de/lehre/vorlesungen/num_prog_cse/ws08/slides/handout_intro.pdf Introduction and Literature] | ||
<!-- | |||
* [http://www5.in.tum.de/lehre/vorlesungen/num_prog_cse/ws08/slides/handout_01.pdf Chapter 1:] Foundations of Numerics from Advanced Mathematics | * [http://www5.in.tum.de/lehre/vorlesungen/num_prog_cse/ws08/slides/handout_01.pdf Chapter 1:] Foundations of Numerics from Advanced Mathematics | ||
* [http://www5.in.tum.de/lehre/vorlesungen/num_prog_cse/ws08/slides/handout_02.pdf Chapter 2:] Motivation and Introduction | * [http://www5.in.tum.de/lehre/vorlesungen/num_prog_cse/ws08/slides/handout_02.pdf Chapter 2:] Motivation and Introduction | ||
Line 41: | Line 42: | ||
* [http://www5.in.tum.de/lehre/vorlesungen/num_prog_cse/ws08/slides/handout_07.pdf Chapter 7:] Iterative Methods: Roots and Optima | * [http://www5.in.tum.de/lehre/vorlesungen/num_prog_cse/ws08/slides/handout_07.pdf Chapter 7:] Iterative Methods: Roots and Optima | ||
* [http://www5.in.tum.de/lehre/vorlesungen/num_prog_cse/ws08/slides/handout_08.pdf Chapter 8:] Ordinary Differential Equations | * [http://www5.in.tum.de/lehre/vorlesungen/num_prog_cse/ws08/slides/handout_08.pdf Chapter 8:] Ordinary Differential Equations | ||
--> | |||
= Tutorial = | |||
The sheets for the tutorial will be published here. | |||
<!-- | |||
* [http://www5.in.tum.de/lehre/vorlesungen/num_prog_cse/ws08/tutorial/exercise_01.pdf Exercise 1:] Mathematical Essentials | * [http://www5.in.tum.de/lehre/vorlesungen/num_prog_cse/ws08/tutorial/exercise_01.pdf Exercise 1:] Mathematical Essentials | ||
* [http://www5.in.tum.de/lehre/vorlesungen/num_prog_cse/ws08/tutorial/exercise_02.pdf Exercise 2:] Linear Algebra | * [http://www5.in.tum.de/lehre/vorlesungen/num_prog_cse/ws08/tutorial/exercise_02.pdf Exercise 2:] Linear Algebra | ||
Line 57: | Line 61: | ||
* [http://www5.in.tum.de/lehre/vorlesungen/num_prog_cse/ws08/tutorial/exercise_11.pdf Exercise 11:] Symmetric Eigenvalue Problem | * [http://www5.in.tum.de/lehre/vorlesungen/num_prog_cse/ws08/tutorial/exercise_11.pdf Exercise 11:] Symmetric Eigenvalue Problem | ||
* [http://www5.in.tum.de/lehre/vorlesungen/num_prog_cse/ws08/tutorial/exercise_12.pdf Exercise 12:] Iterative Methods: Roots and Optima | * [http://www5.in.tum.de/lehre/vorlesungen/num_prog_cse/ws08/tutorial/exercise_12.pdf Exercise 12:] Iterative Methods: Roots and Optima | ||
--> | |||
= Exam = | = Exam = | ||
A written exam will be offered at the end of the lecture period. | A written exam will be offered at the end of the lecture period. More details will follow. | ||
Revision as of 11:26, 21 July 2008
- Term
- Winter 08
- Lecturer
- Univ.-Prof. Dr. Hans-Joachim Bungartz
- Time and Place
- lecture: t.b.a., room 02.07.023, first lecture: t.b.a.
- tutorial: t.b.a., room 02.07.023
- Audience
- Computational Science and Engineering, 1st semester
- Tutorials
- [Dipl.-Tech._Math._Stefanie_Schraufstetter]
- Exam
- t.b.a.
- Semesterwochenstunden / ECTS Credits
- 6 SWS / 8 Credits
- TUMonline
- {{{tumonline}}}
Contents
This course provides an overview of numerical algorithms. Topics are:
- Floating point arithmetics
- Solving Linear systems
- Interpolation
- Quadrature
- Eigenvalue problems
- Basics of iterative methods
- Basics of numerical methods for ordinary differential equations
The course will start with a short revision of mathematical foundations for numerical algorithms.
Lecture Notes
(Material will be updated throughout the semester)
Tutorial
The sheets for the tutorial will be published here.
Exam
A written exam will be offered at the end of the lecture period. More details will follow.
Literature
- Stoer, Bulirsch: Numerische Mathematik, Springer-Verlag, part 1 (8. edition 1999) and part 2 (4. edition 2000)
- Stoer, Bulirsch: Introduction to Numerical Analysis, Springer, 3. edition 2002
- Press, Flannery, Teukolsky, Vetterling: Numerical Recipes, Cambridge University Press
- Golub, Ortega: Scientific Computing: An Introduction with Parallel Computing, Academic Press, 1993