Numerical Programming I - Winter 08: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
: Tutorial: Monday, 14:00 - 15:30, lecture room 02.07.023 | : Tutorial: Monday, 14:00 - 15:30, lecture room 02.07.023 | ||
| credits = 6 SWS (4V + 2Ü) / 8 Credits | | credits = 6 SWS (4V + 2Ü) / 8 Credits | ||
| audience = Computational Science and Engineering, 1st semester ([https://www.in.tum.de/myintum/kurs_verwaltung/cm.html?cmid=228&lang=en | | audience = Computational Science and Engineering, 1st semester ([https://www.in.tum.de/myintum/kurs_verwaltung/cm.html?cmid=228&lang=en module IN2156]) | ||
| tutorials = [[Dipl.-Tech. Math. Stefanie Schraufstetter]] | | tutorials = [[Dipl.-Tech. Math. Stefanie Schraufstetter]] | ||
| exam = t.b.a. | | exam = t.b.a. |
Revision as of 10:48, 22 July 2008
- Term
- Winter 08
- Lecturer
- Univ.-Prof. Dr. Hans-Joachim Bungartz
- Time and Place
- Lecture: Tuesday 9:00 - 10:30, lecture room 02.07.023; Thursday 12:00 - 13:30, lecture room 02.07.023
- Tutorial: Monday, 14:00 - 15:30, lecture room 02.07.023
- Audience
- Computational Science and Engineering, 1st semester (module IN2156)
- Tutorials
- Dipl.-Tech. Math. Stefanie Schraufstetter
- Exam
- t.b.a.
- Semesterwochenstunden / ECTS Credits
- 6 SWS (4V + 2Ü) / 8 Credits
- TUMonline
- {{{tumonline}}}
Contents
This course provides an overview of numerical algorithms. Topics are:
- Floating point arithmetics
- Solving Linear systems
- Interpolation
- Quadrature
- Eigenvalue problems
- Basics of iterative methods
- Basics of numerical methods for ordinary differential equations
The course will start with a short revision of mathematical foundations for numerical algorithms.
Lecture Notes
(Material will be updated throughout the semester)
Tutorial
The sheets for the tutorial will be published here.
Exam
A written exam will be offered at the end of the lecture period. More details will follow.
Literature
- Stoer, Bulirsch: Numerische Mathematik, Springer-Verlag, part 1 (8. edition 1999) and part 2 (4. edition 2000)
- Stoer, Bulirsch: Introduction to Numerical Analysis, Springer, 3. edition 2002
- Press, Flannery, Teukolsky, Vetterling: Numerical Recipes, Cambridge University Press
- Golub, Ortega: Scientific Computing: An Introduction with Parallel Computing, Academic Press, 1993