Numerical Programming I - Winter 08: Difference between revisions

From Sccswiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 72: Line 72:
* Stoer, Bulirsch: Numerische Mathematik, Springer-Verlag, part 1 (8. edition 1999) and part 2 (4. edition 2000)
* Stoer, Bulirsch: Numerische Mathematik, Springer-Verlag, part 1 (8. edition 1999) and part 2 (4. edition 2000)
* Stoer, Bulirsch: Introduction to Numerical Analysis, Springer, 3. edition 2002
* Stoer, Bulirsch: Introduction to Numerical Analysis, Springer, 3. edition 2002
* Dahlquist, Björck: Numerical Methods in Scientific Computing: Volume 1 & 2, SIAM 2008, [http://www.mai.liu.se/~akbjo/NMbook.html]
* Dahlquist, Björck: Numerical Methods in Scientific Computing: Volume 1 & 2, SIAM 2008, [http://www.mai.liu.se/~akbjo/NMbook.html http://www.mai.liu.se/~akbjo/NMbook.html]
* Press, Flannery, Teukolsky, Vetterling: [http://www.nr.com/ Numerical Recipes], Cambridge University Press
* Press, Flannery, Teukolsky, Vetterling: [http://www.nr.com/ Numerical Recipes], Cambridge University Press
* Golub, Ortega: Scientific Computing: An Introduction with Parallel Computing, Academic Press, 1993
* Golub, Ortega: Scientific Computing: An Introduction with Parallel Computing, Academic Press, 1993

Revision as of 11:30, 3 September 2008

Term
Winter 08
Lecturer
Univ.-Prof. Dr. Hans-Joachim Bungartz
Time and Place
Lecture: Tuesday 9:00 - 10:30, lecture room 02.07.023; Thursday 12:00 - 13:30, lecture room 02.07.023
Tutorial: Monday, 14:00 - 15:30, lecture room 02.07.023
Audience
Computational Science and Engineering, 1st semester (module IN2156)
Tutorials
Stefanie Schraufstetter
Exam
t.b.a.
Semesterwochenstunden / ECTS Credits
6 SWS (4V + 2Ü) / 8 Credits
TUMonline
{{{tumonline}}}




Contents

This course provides an overview of numerical algorithms. Topics are:

  • Floating point arithmetics
  • Solving Linear systems
  • Interpolation
  • Quadrature
  • Eigenvalue problems
  • Basics of iterative methods
  • Basics of numerical methods for ordinary differential equations

The course will start with a short revision of mathematical foundations for numerical algorithms.


Lecture Notes

(Material will be updated throughout the semester)

Tutorial

The sheets for the tutorial will be published here.


Exam

A written exam will be offered at the end of the lecture period. More details will follow.


Literature

  • Stoer, Bulirsch: Numerische Mathematik, Springer-Verlag, part 1 (8. edition 1999) and part 2 (4. edition 2000)
  • Stoer, Bulirsch: Introduction to Numerical Analysis, Springer, 3. edition 2002
  • Dahlquist, Björck: Numerical Methods in Scientific Computing: Volume 1 & 2, SIAM 2008, http://www.mai.liu.se/~akbjo/NMbook.html
  • Press, Flannery, Teukolsky, Vetterling: Numerical Recipes, Cambridge University Press
  • Golub, Ortega: Scientific Computing: An Introduction with Parallel Computing, Academic Press, 1993