Fundamental Algorithms - Winter 09: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 22: | Line 22: | ||
== Slides from the Lecture == | == Slides from the Lecture == | ||
; Introduction - Algorithms, Fibonacci example, growth of functions : Oct 30 | ; Introduction - Algorithms, Fibonacci example, growth of functions : Oct 30, Nov 6 | ||
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/slides/fundalg01.pdf slides] | : [http://www5.in.tum.de/lehre/vorlesungen/fundalg/slides/fundalg01.pdf slides] | ||
; Sorting Algorithms : Nov 6, Nov 13 | |||
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/slides/fundalg02.pdf slides] | |||
== Worksheets == | == Worksheets == | ||
; Growth of functions : Oct 30 | ; Growth of functions : Oct 30 | ||
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/worksheets/fundalg2.pdf worksheet] | : [http://www5.in.tum.de/lehre/vorlesungen/fundalg/worksheets/fundalg2.pdf worksheet], [http://www5.in.tum.de/lehre/vorlesungen/fundalg/worksheets/fundalg2sol.pdf solution] | ||
; Complexity of Algorithms, Sorting on Matrices : Nov 6 | |||
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/worksheets/fundalg3.pdf worksheet] | |||
== Further Material == | == Further Material == |
Revision as of 10:20, 6 November 2009
- Term
- Winter 09
- Lecturer
- Dr. Michael Bader
- Time and Place
- Friday, 9-11, lecture hall MI 00.13.009A (first lecture: Oct 30)
- Audience
- Computational Science and Engineering, 1st semester (Module IN2005); Biomedical Computing
- Tutorials
- -
- Exam
- written exam (t.b.a.)
- Semesterwochenstunden / ECTS Credits
- 2 SWS (2V) / 3 Credits
- TUMonline
- {{{tumonline}}}
Contents
The course will provide an overview of fundamental algorithms and an introduction to the analysis of algorithms. Topics will be:
- Fundamentals: Models of Computation, Complexity Measures
- Sorting: Bubble-Sort, Merge-Sort, Quick-Sort, Median-Algorithms, Lower Bounds, etc.: sorting in parallel
- Searching: Hashing, Search Tress, etc.
- Artithmetic Problems: parallel prefix computation, parallel matrix and vector operations
- Graph Algorithms: Transitive Closure, Shortest Path Problems, Minimum Spanning Trees (if time allows)
Lecture Notes and Material
Slides from the Lecture
- Introduction - Algorithms, Fibonacci example, growth of functions
- Oct 30, Nov 6
- slides
- Sorting Algorithms
- Nov 6, Nov 13
- slides
Worksheets
- Growth of functions
- Oct 30
- worksheet, solution
- Complexity of Algorithms, Sorting on Matrices
- Nov 6
- worksheet
Further Material
Literature
- Cormen, Leiserson, Rivest, Stein: Introduction to Algorithms, MIT Press
- Heun: Grundlegende Algorithmen, Vieweg 2000
- Sedgewick: Algorithms, Pearson Education
- Shackleford, Computing and Algorithms, Addison Wesley Longman
- Kleinberg, Tardos: Algorithm Design, Pearson Education