Scientific Computing II - Summer 14: Difference between revisions
Jump to navigation
Jump to search
m (→Contents) |
|||
| Line 79: | Line 79: | ||
|| Apr 22 | || Apr 22 | ||
|| [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss13/uebungen/blatt1angabe.pdf Sheet1], [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss13/uebungen/blatt1solution.pdf Solution] | || [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss13/uebungen/blatt1angabe.pdf Sheet1], [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss13/uebungen/blatt1solution.pdf Solution] | ||
|| | || [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss12/tutorial_00/00_organisation-and-introduction.pdf Slides]|| [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss12/tutorial_00/code.tar.gz Matlab Code] | ||
|- | |- | ||
| Apr 23 || [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss13/multigrid.pdf Multigrid Methods], [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss13/MG-illustration.pdf Animations] | | Apr 23 || [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss13/multigrid.pdf Multigrid Methods], [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss13/MG-illustration.pdf Animations] | ||
Revision as of 13:20, 7 January 2014
- Term
- Summer 2014
- Lecturer
- Prof. Dr. Michael Bader
- Time and Place
- t.b.a.
- Audience
- Computational Science and Engineering, 2nd semester
others: see module description - Tutorials
- Kaveh Rahnema (time and place t.b.a.)
- Exam
- written exam
- Semesterwochenstunden / ECTS Credits
- 2V + 2Ü / 5 Credits
- TUMonline
- see last year's lecture: Scientific Computing II
Announcements
Contents
This course provides a deeper knowledge in two important fields of scientific computing:
- iterative solution of large sparse systems of linear equations:
- relaxation methods
- multigrid methods
- steepest descent
- conjugate gradient methods
- molecular dynamics simulations
- the physical model
- the mathematical model
- approximations and discretization
- implementational aspects
- parallelisation
- examples of nanofluidic simulations
The course is conceived for students in computer science, mathematics, or some field of science or engineering who already have a certain background in the numerical treatment of (partial) differential equations.
Lecture Notes and Material
will be made available throughout the lecture ...
Literature
- William L. Briggs, Van Emden Henson, Steve F. McCormick. A Multigrid Tutorial. Second Edition. SIAM. 2000.
- Ulrich Trottenberg, Cornelis Oosterlee, Anton Schüller. Multigrid. Elsevier, 2001.
- J.R. Shewchuk. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain (download as PDF). 1994.
- M. Griebel, S. Knapek, G. Zumbusch, and A. Caglar. Numerische Simulation in der Molekulardynamik. Springer, 2004.
- M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press, 2003.
- D. Frenkel and B. Smith. Understanding Molecular Simulation from Algorithms to ASpplications. Academic Press (2nd ed.), 2002.
- R. J. Sadus. Molecular Simulation of Fluids; Theory, Algorithms and Object-Orientation. Elsevier, 1999.
- D. Rapaport. The art of molecular dynamics simulation. Camebridge University Press, 1995.
Further Material
Annotated slides for the lecture in summer 2010 /(given by Dr. Tobias Weinzierl) are available from the TeleTeachingTool Lecture Archive
Matlab (together with installation instructions) is available from https://matlab.rbg.tum.de/