Scientific Computing II - Summer 14: Difference between revisions

From Sccswiki
Jump to navigation Jump to search
Line 128: Line 128:
* M. Griebel, S. Knapek, G. Zumbusch, and A. Caglar. Numerische Simulation in der Molekulardynamik. Springer, 2004.  
* M. Griebel, S. Knapek, G. Zumbusch, and A. Caglar. Numerische Simulation in der Molekulardynamik. Springer, 2004.  
* M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press, 2003.  
* M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press, 2003.  
* D. Frenkel and B. Smith. Understanding Molecular Simulation from Algorithms to ASpplications. Academic Press (2nd ed.), 2002.  
* D. Frenkel and B. Smith. Understanding Molecular Simulation from Algorithms to Applications. Academic Press (2nd ed.), 2002.  
* R. J. Sadus. Molecular Simulation of Fluids; Theory, Algorithms and Object-Orientation. Elsevier, 1999.  
* R. J. Sadus. Molecular Simulation of Fluids; Theory, Algorithms and Object-Orientation. Elsevier, 1999.  
* D. Rapaport. The art of molecular dynamics simulation. Camebridge University Press, 1995.  
* D. Rapaport. The art of molecular dynamics simulation. Camebridge University Press, 1995.  

Revision as of 13:28, 11 March 2014

Term
Summer 2014
Lecturer
Prof. Dr. Michael Bader
Time and Place
t.b.a.
Audience
Computational Science and Engineering, 2nd semester
others: see module description
Tutorials
Kaveh Rahnema (time and place t.b.a.)
Exam
written exam
Semesterwochenstunden / ECTS Credits
2V + 2Ü / 5 Credits
TUMonline
Scientific Computing II



Announcements

Contents

This course provides a deeper knowledge in two important fields of scientific computing:

  • iterative solution of large sparse systems of linear equations:
    • relaxation methods
    • multigrid methods
    • steepest descent
    • conjugate gradient methods
  • molecular dynamics simulations
    • the physical model
    • the mathematical model
    • approximations and discretization
    • implementational aspects
    • parallelisation
    • examples of nanofluidic simulations

The course is conceived for students in computer science, mathematics, or some field of science or engineering who already have a certain background in the numerical treatment of (partial) differential equations.

Lecture Notes and Material

will be made available throughout the lecture ...


Literature

  • William L. Briggs, Van Emden Henson, Steve F. McCormick. A Multigrid Tutorial. Second Edition. SIAM. 2000.
  • Ulrich Trottenberg, Cornelis Oosterlee, Anton Schüller. Multigrid. Elsevier, 2001.
  • J.R. Shewchuk. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain (download as PDF). 1994.
  • V. Eijkhout: Introduction to High-Performance Scientific Computing (textbook, available as PDF on the website)
  • M. Griebel, S. Knapek, G. Zumbusch, and A. Caglar. Numerische Simulation in der Molekulardynamik. Springer, 2004.
  • M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press, 2003.
  • D. Frenkel and B. Smith. Understanding Molecular Simulation from Algorithms to Applications. Academic Press (2nd ed.), 2002.
  • R. J. Sadus. Molecular Simulation of Fluids; Theory, Algorithms and Object-Orientation. Elsevier, 1999.
  • D. Rapaport. The art of molecular dynamics simulation. Camebridge University Press, 1995.

Further Material

Annotated slides for the lecture in summer 2010 /(given by Dr. Tobias Weinzierl) are available from the TeleTeachingTool Lecture Archive

Matlab (together with installation instructions) is available from https://matlab.rbg.tum.de/