Scientific Computing II - Summer 14: Difference between revisions

From Sccswiki
Jump to navigation Jump to search
Line 108: Line 108:
| May 27 || [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss14/conjugate.pdf CG and Preconditioning ]<br>(Maple worksheet [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss14/conjugate_gradient.mws conjugate_gradient.mws], also as [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss14/conjugate_gradient.pdf PDF])   
| May 27 || [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss14/conjugate.pdf CG and Preconditioning ]<br>(Maple worksheet [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss14/conjugate_gradient.mws conjugate_gradient.mws], also as [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss14/conjugate_gradient.pdf PDF])   
|| Jun 2
|| Jun 2
|| [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss14/blatt6.pdf sheet6]
|| [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss14/blatt6.pdf sheet6]  
||
||[http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss14/given_ex_5.tar.gz Code_Ex5], [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss14/given_ex_6.tar.gz Code_Ex6],  [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss14/solution_ex_5.tar.gz Solution_Ex5], [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss14/solution_ex_6.tar.gz Solution_Ex6]
|-  
|-  
| Jun 3 || [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss14/conjugate.pdf CG and Preconditioning (cont)]
| Jun 3 || [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss14/conjugate.pdf CG and Preconditioning (cont)]

Revision as of 15:32, 13 June 2014

Term
Summer 2014
Lecturer
Prof. Dr. Michael Bader
Time and Place
Tuesday 10-12, lecture room MI 02.07.023
First Lecture: Apr 8
Audience
Computational Science and Engineering, 2nd semester
others: see module description
Tutorials
Kaveh Rahnema (time and place t.b.a.)
Monday 10-12, lecture room MI 02.07.023,
First Tutorial: April 14
Exam
written exam
Semesterwochenstunden / ECTS Credits
2V + 2Ü / 5 Credits
TUMonline
Scientific Computing II



Announcements

  • on June 16, we will restart with a lecture (which replaces the usual tutorial)


Contents

This course provides a deeper knowledge in two important fields of scientific computing:

  • iterative solution of large sparse systems of linear equations:
    • relaxation methods
    • multigrid methods
    • steepest descent
    • conjugate gradient methods
  • molecular dynamics simulations
    • the physical model
    • the mathematical model
    • approximations and discretization
    • implementational aspects
    • parallelisation
    • examples of nanofluidic simulations

The course is conceived for students in computer science, mathematics, or some field of science or engineering who already have a certain background in the numerical treatment of (partial) differential equations.

Lecture Notes and Material

will be made available throughout the lecture ...

lecture material tutorial exercise matlab
Apr 8 Introduction, Relaxation Methods Apr 14 sheet1 , solution1
Apr 15 Multigrid Methods (Part I), Animations Apr 21 - (Easter holiday)
Apr 28 (Mon) Multigrid Methods (Part II) Apr 29 (Tue) sheet2 , solution2 smoothers.m
May 05 (Mon) Multigrid Methods (Part II cont., Part III) May 12 sheet3 ,solution3 code_exercise3
May 13 Multigrid Methods (Part III) May 19 sheet4, solution4 smooth.m, code_exercise4
May 20 Steepest Descent and Conjugate Gradient Methods
(Maple worksheet quadratic_forms.mws, also as PDF)
May 26 sheet5, solution5
May 27 CG and Preconditioning
(Maple worksheet conjugate_gradient.mws, also as PDF)
Jun 2 sheet6 Code_Ex5, Code_Ex6, Solution_Ex5, Solution_Ex6
Jun 3 CG and Preconditioning (cont) Jun 9&10 lecture and tutorial cancelled (holidays)
Jun 16 (Mon!) lecture replaces tutorial -

Literature

  • William L. Briggs, Van Emden Henson, Steve F. McCormick. A Multigrid Tutorial. Second Edition, SIAM, 2000 (available as eBook in the TUM library)
  • Ulrich Trottenberg, Cornelis Oosterlee, Anton Schüller. Multigrid. Elsevier, 2001 (available as eBook in the TUM library)
  • J.R. Shewchuk. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain (download as PDF). 1994.
  • V. Eijkhout: Introduction to High-Performance Scientific Computing (textbook, available as PDF on the website)
  • M. Griebel, S. Knapek, G. Zumbusch, and A. Caglar. Numerical simulation in molecular dynamics. Springer, 2007 (available as eBook in the TUM library)
  • M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press, 2003.
  • D. Frenkel and B. Smith. Understanding Molecular Simulation from Algorithms to Applications. Academic Press (2nd ed.), 2002.
  • R. J. Sadus. Molecular Simulation of Fluids; Theory, Algorithms and Object-Orientation. Elsevier, 1999.
  • D. Rapaport. The art of molecular dynamics simulation. Camebridge University Press, 1995.

Further Material

Annotated slides for the lecture in summer 2010 /(given by Dr. Tobias Weinzierl) are available from the TeleTeachingTool Lecture Archive

Matlab (together with installation instructions) is available from https://matlab.rbg.tum.de/