Modellbildung und Simulation - Summer 17: Difference between revisions

From Sccswiki
Jump to navigation Jump to search
(modsim 17 - 2. Version)
(modsim 17 - englisch)
Line 24: Line 24:




= Aktuelles =
= Current Issues =
<!--* '''<span style="color:red">Exam Review on 16.08.2015 between 15:00 hrs und 16:30 hrs in MI 02.05.036</span>'''
<!--* '''<span style="color:red">Exam Review on 16.08.2015 between 15:00 hrs und 16:30 hrs in MI 02.05.036</span>'''
* Die Fragestunde findet am 28.7 zwischen 14 Uhr und 15:30 Uhr im HS 2 statt.
* Die Fragestunde findet am 28.7 zwischen 14 Uhr und 15:30 Uhr im HS 2 statt.
Line 38: Line 38:
      
      


= Inhalt =
= Topic =
Modelle sind vereinfachende Abstraktionen realer Systeme, Simulationen sind (meistens, für uns immer) rechnergestützte Experimente, ausgehend von einem Modell. Für das Verständnis, die Vorhersage sowie die Optimierung des Systemverhaltens werden effiziente und aussagekräftige Simulationen immer wichtiger. Entsprechend der großen Vielfalt zu modellierender sowie zu simulierender Systeme (beispielhaft seien genannt Klima, Wetter, chemische oder biologische Reaktoren, Crash-Tests im Automobilbau, Börsenkurse, Scheduling, Straßenverkehr, Verkehr in Rechensystemen, Softwaresysteme) kommen ganz unterschiedliche mathematische und informatische Instrumentarien zum Einsatz - deterministische oder stochastische, diskrete oder numerische - aber auch weniger formale wie textuelle oder graphische Beschreibungen (Diagramme etc.). Gleichwohl gibt es übergeordnete Prinzipien, etwa bei der Herleitung, Analyse oder Bewertung von Modellen.
Models are simplifying abstract representations of real systems, simulations are (mostly/always) computer-aided experiments, based upon a model. To understand, predict and optimize the behavior of a system more efficient and expressive simulations are necessary. Corresponding to the immense variety of modelling, as well as to-be-modeled systems (e.g. climate, weather, chemical or biological reactions, crash-tests, stock prices, scheduling, traffic, traffic in computing systems, software systems) a wide range of fundamentally different mathematical and informatical methods is used. Those can be deterministic or stochastic, discrete or numeric, but also less formal methods, as textual or graphic descriptions (e.g diagrams). Nevertheless there exist various general principles, e.g. for the derivation, analysis or evaluation of a model.


In dieser Vorlesung wird in die mathematisch-informatische Modellierung eingeführt, wobei Themen wie Modellklassen, Auswahl des geeigneten Instrumentariums zur formalen Beschreibung, Betrachtungsebenen und Hierarchie, Herleitung von Modellen sowie Eigenschaften und Analyse von Modellen besprochen werden.
In this lecture an introduction to mathematical-informatical modeling is given. Hereby various topics are discussed. This includes model classes, the choice of proper instruments to formally describe a model, the derivation of models, as well as properties of models.


Es schließt sich an die exemplarische Behandlung von Beispielen diskreter Modelle und Simulationsverfahren (Entscheidungstheorie, Scheduling, diskrete Ereignissimulation) sowie kontinuierlicher Modelle und Simulationstechniken (Populationsdynamik, Regelungstechnik, Verkehrssimulation, Wärmeleitung) aus unterschiedlichen wissenschaftlichen Gebieten. Dabei wird jeweils auf das erforderliche Rüstzeug, die Herleitung des Modells sowie auf seine Umsetzung zur Realisierung von Simulationen eingegangen.
Multiple examples of discrete models and simulation methods (Decision theory, scheduling, discrete event simulation), as well as examples of continuous models and their simulation techniques (population dynamics, control theory, traffic simulations, heat conduction) from a wide range of scientific backgrounds are presented. Hereby the necessary tools, the derivation of the model, and its realization in a simulation are elaborated.


Die Vorlesung beleuchtet diese Thematik aus der Sicht der Informatik. Die erforderlichen mathematischen Inhalte werden in der Vorlesung behandelt; über das Grundstudium hinausgehende diesbezügliche Voraussetzungen gibt es nicht.
This lecture shines light on these topics in the context of computer science. The necessary mathematical contents are discussed; this course does not require the students to have any prior knowledge that exceed the undergraduate level.


= Buch zur Vorlesung =  
= Literature =  
* Das passende Buch zur Vorlesung: [[Buch Modellbildung und Simulation|Modellbildung und Simulation - Eine anwendungsorientierte Einführung]]
* A fitting book for the lecture (English version available): [[Buch Modellbildung und Simulation|Modellbildung und Simulation - Eine anwendungsorientierte Einführung]]
: [[Image:ModSimBuch_Cover.jpg]]
: [[Image:ModSimBuch_Cover.jpg]]




[[Category:Teaching]]
[[Category:Teaching]]

Revision as of 12:25, 1 December 2016

Term
Summer 17
Lecturer
Univ.-Prof. Dr. Hans-Joachim Bungartz
Time and Place
Audience
Modul IN2010
Informatics Diplom: Elective course in the field of theoretical computer science
Informatics Bachelor: Elective course
Information Systems(Wirtschaftsinformatik) Bachelor: Elective course
Informatics Master: Elective course in the Area of "Algorithms and Scientific Computing"
Computational Science and Engineering: Elective course (Application Catalogue E1)
Students of Mathematics, Science and Engineering
Tutorials
Paul Sarbu, Steffen Seckler
Time:
Exam
Semesterwochenstunden / ECTS Credits
6 SWS (4V + 2Ü) / 8 Credits
TUMonline
Lecture, Tutorial,



Current Issues

Exam Instructions

  • You may only use one hand-written sheet of paper (size A4, on both pages).
  • Any other material including electronic devices of any kind is forbidden.
  • Do not use pencil, or red or green ink.


Topic

Models are simplifying abstract representations of real systems, simulations are (mostly/always) computer-aided experiments, based upon a model. To understand, predict and optimize the behavior of a system more efficient and expressive simulations are necessary. Corresponding to the immense variety of modelling, as well as to-be-modeled systems (e.g. climate, weather, chemical or biological reactions, crash-tests, stock prices, scheduling, traffic, traffic in computing systems, software systems) a wide range of fundamentally different mathematical and informatical methods is used. Those can be deterministic or stochastic, discrete or numeric, but also less formal methods, as textual or graphic descriptions (e.g diagrams). Nevertheless there exist various general principles, e.g. for the derivation, analysis or evaluation of a model.

In this lecture an introduction to mathematical-informatical modeling is given. Hereby various topics are discussed. This includes model classes, the choice of proper instruments to formally describe a model, the derivation of models, as well as properties of models.

Multiple examples of discrete models and simulation methods (Decision theory, scheduling, discrete event simulation), as well as examples of continuous models and their simulation techniques (population dynamics, control theory, traffic simulations, heat conduction) from a wide range of scientific backgrounds are presented. Hereby the necessary tools, the derivation of the model, and its realization in a simulation are elaborated.

This lecture shines light on these topics in the context of computer science. The necessary mathematical contents are discussed; this course does not require the students to have any prior knowledge that exceed the undergraduate level.

Literature

Error creating thumbnail: Unable to save thumbnail to destination