Scientific Computing II - Summer 17: Difference between revisions

From Sccswiki
Jump to navigation Jump to search
(Created page with "{{Lecture | term = Summer 2017 | lecturer = Prof. Dr. Michael Bader | timeplace = t.b.a. <!-- Monday 14-16 (MI HS 2); first lecture: Mon, Apr 11 --> | credit...")
 
mNo edit summary
Line 2: Line 2:
| term = Summer 2017
| term = Summer 2017
| lecturer = [[Michael Bader|Prof. Dr. Michael Bader]]
| lecturer = [[Michael Bader|Prof. Dr. Michael Bader]]
| timeplace = t.b.a. <!-- Monday 14-16 (MI HS 2); first lecture: Mon, Apr 11 -->
| timeplace = Monday 14-16 (MI HS 2); first lectures: Mon, Apr 24, and Tue, Apr 25 (in tutorial slot)
| credits = 2V + 2&Uuml; / 5 Credits
| credits = 2V + 2&Uuml; / 5 Credits
| audience = Computational Science and Engineering, 2nd semester <br> others: [https://campus.tum.de/tumonline/WBMODHB.wbShowMHBReadOnly?pKnotenNr=476730&pOrgNr=14189 see module description]
| audience = Computational Science and Engineering, 2nd semester <br> others: [https://campus.tum.de/tumonline/WBMODHB.wbShowMHBReadOnly?pKnotenNr=476730&pOrgNr=14189 see module description]
| tutorials = t.b.a. <!-- [[Carsten Uphoff, M.Sc.]] <br> Tuesdays 10-12, lecture room MI 02.07.023 (from Apr 12) -->
| tutorials = [[Carsten Uphoff, M.Sc.]] <br> Tuesdays 10-12, lecture room MI 02.07.023 (from May 2)
| exam = written exam, time/day see below
| exam = written exam, time/day see below
| tumonline = [https://campus.tum.de/tumonline/LV.detail?clvnr=950238630 Scientific Computing II] (course from 2016!)
| tumonline = [https://campus.tum.de/tumonline/wbLv.wbShowLVDetail?pStpSpNr=950290637 Scientific Computing II]
}}
}}


= Announcements =
= Announcements =
* on '''Tue, Apr 25''' (10-12, MI HS 2), '''there will be a lecture''' replacing the one on May 1.


= Contents =
= Contents =

Revision as of 13:55, 13 April 2017

Term
Summer 2017
Lecturer
Prof. Dr. Michael Bader
Time and Place
Monday 14-16 (MI HS 2); first lectures: Mon, Apr 24, and Tue, Apr 25 (in tutorial slot)
Audience
Computational Science and Engineering, 2nd semester
others: see module description
Tutorials
Carsten Uphoff, M.Sc.
Tuesdays 10-12, lecture room MI 02.07.023 (from May 2)
Exam
written exam, time/day see below
Semesterwochenstunden / ECTS Credits
2V + 2Ü / 5 Credits
TUMonline
Scientific Computing II



Announcements

  • on Tue, Apr 25 (10-12, MI HS 2), there will be a lecture replacing the one on May 1.

Contents

This course provides a deeper knowledge in two important fields of scientific computing:

  • iterative solution of large sparse systems of linear equations:
    • relaxation methods
    • multigrid methods
    • steepest descent
    • conjugate gradient methods
    • preconditioning
  • molecular dynamics simulations
    • particle-based modelling (n-body simulation)
    • algorithms for efficient force calculation
    • parallelisation

The course is conceived for students in computer science, mathematics, or some field of science or engineering who already have a certain background in the numerical treatment of (partial) differential equations.

Lecture Slides

Lecture slides will be published here as soon as they become available. For future lectures, the respective slides from summer 2016 will be linked.

Exercises

See the Moodle course.


Old exams are available on the websites of the last years (note that the curriculum of the lecture has slightly changed since then!): [1] [2] [3]

Literature

  • William L. Briggs, Van Emden Henson, Steve F. McCormick. A Multigrid Tutorial. Second Edition, SIAM, 2000 (available as eBook in the TUM library)
  • Ulrich Trottenberg, Cornelis Oosterlee, Anton Schüller. Multigrid. Elsevier, 2001 (available as eBook in the TUM library)
  • J.R. Shewchuk. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain (download as PDF). 1994.
  • V. Eijkhout: Introduction to High-Performance Scientific Computing (textbook, available as PDF on the website)
  • M. Griebel, S. Knapek, G. Zumbusch, and A. Caglar. Numerical simulation in molecular dynamics. Springer, 2007 (available as eBook in the TUM library)
  • M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press, 2003.
  • D. Frenkel and B. Smith. Understanding Molecular Simulation from Algorithms to Applications. Academic Press (2nd ed.), 2002.
  • R. J. Sadus. Molecular Simulation of Fluids; Theory, Algorithms and Object-Orientation. Elsevier, 1999.
  • D. Rapaport. The art of molecular dynamics simulation. Cambridge University Press, 1995.