Parallel Numerics - Winter 09: Difference between revisions

From Sccswiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 42: Line 42:
* [[http://www5.in.tum.de/lehre/vorlesungen/parnum/WS09/PARNUM_4_Dense.pdf Dense Matrices]]
* [[http://www5.in.tum.de/lehre/vorlesungen/parnum/WS09/PARNUM_4_Dense.pdf Dense Matrices]]
* [[http://www5.in.tum.de/lehre/vorlesungen/parnum/WS09/PARNUM_5_Sparse.pdf Sparse Matrices]]
* [[http://www5.in.tum.de/lehre/vorlesungen/parnum/WS09/PARNUM_5_Sparse.pdf Sparse Matrices]]
* [[http://www5.in.tum.de/lehre/vorlesungen/parnum/WS09/PARNUM_6_it.pdf Iterative Solvers for Sparse Matrices]]
* [[http://www5.in.tum.de/lehre/vorlesungen/parnum/WS09/PARNUM_6_it.pdf Iterative Methods for Sparse Matrices]]
* [[http://www5.in.tum.de/lehre/vorlesungen/parnum/WS09/PARNUM_7_prec.pdf Preconditioning]]


=== Tutorials ===
=== Tutorials ===
Line 51: Line 52:
# Parallel Gaussian elimination & Collective Operations ([[http://www5.in.tum.de/lehre/vorlesungen/parnum/WS09/worksheet4.pdf  Worksheet]], [[http://www5.in.tum.de/lehre/vorlesungen/parnum/WS08/worksheet5.c  Source Code]])
# Parallel Gaussian elimination & Collective Operations ([[http://www5.in.tum.de/lehre/vorlesungen/parnum/WS09/worksheet4.pdf  Worksheet]], [[http://www5.in.tum.de/lehre/vorlesungen/parnum/WS08/worksheet5.c  Source Code]])
# Tridiagonal Matrices, the Hockney/Golub method & Message Tags ([[http://www5.in.tum.de/lehre/vorlesungen/parnum/WS09/worksheet5.pdf  Worksheet]])
# Tridiagonal Matrices, the Hockney/Golub method & Message Tags ([[http://www5.in.tum.de/lehre/vorlesungen/parnum/WS09/worksheet5.pdf  Worksheet]])
# Sparse Matrix-Vector Multiplication & MPI Communicators ([[http://www5.in.tum.de/lehre/vorlesungen/parnum/WS09/worksheet6.pdf  Worksheet]])
# Stationary Methods ([[http://www5.in.tum.de/lehre/vorlesungen/parnum/WS09/worksheet7.pdf  Worksheet]])


== Literature & External Links ==
== Literature & External Links ==

Revision as of 15:24, 10 December 2009

Term
Winter 09
Lecturer
Univ.-Prof. Dr. Thomas Huckle
Time and Place
Lecture: Monday 10:15 - 11:45 Uhr (MI 02.07.023), Tutorial Friday 10:15 - 11:45 Uhr (MI 02.07.023)

For the first lectures we will meet on oct. 23rd (friday), 26th (monday), and 30th (friday). The lecture on nov. 2nd does not take place

Audience
CSE (compulsory course, 3rd semester), Mathematics (Master), Informatics (Master) (Modul IN2012)
Tutorials
Martin Buchholz
Exam
tba
Semesterwochenstunden / ECTS Credits
SWS (2V + 2Ü) / 5 Credits
TUMonline
{{{tumonline}}}



IN2012

This course will be given in every winter term. The lectures and tutorials are conducted in English, and the course substitutes the German lecture "Numerik auf Parallelrechnern".

News

Most students participating in this course already have access to computers with MPI. If you don't have this access or even don't know what MPI is, please write an email to buchholm@in.tum.de, providing your full name, your login-name (halle) and your course of studies. We will then create an account at our chair.

Contents

  1. High-Performance Computing
  2. Performance: Analysis, Modeling, and Measurements
  3. Basic Linear Algebra Subprograms
  4. Direct Solution of Sparse Linear Systems
  5. Iterative Methods for Linear Systems
  6. Linear Eigenvalue Problems
  7. Programming in MPI

Course Material

Lecture Notes

Slides

Tutorials

  1. Flynn's Taxonomy & MPI Basics ([Worksheet], [Sourcecode])
  2. Vector-Vector Operations & P2P Communication II ([Worksheet], [Sourcecode])
  3. Matrix-Matrix-Operations & P2P Communication III ([Worksheet], [Source Code])
  4. Parallel Gaussian elimination & Collective Operations ([Worksheet], [Source Code])
  5. Tridiagonal Matrices, the Hockney/Golub method & Message Tags ([Worksheet])
  6. Sparse Matrix-Vector Multiplication & MPI Communicators ([Worksheet])
  7. Stationary Methods ([Worksheet])

Literature & External Links

  1. Numerical Linear Algebra for High-Performance Computers (Dongarra, Duff, Sorensen, van der Vorst)
  2. Parallel Algorithms for Matrix Computations (Gallivan, Heath, Ng, Ortega,...)
  3. A User's Guide to MPI (Pacheco)
  4. Iterative Methods for Sparse Linear Systems (Saad)
  5. Loesung linearer Gleichungssysteme auf Parallelrechnern (Frommer)
  1. [An Introduction To Quantum Computing for Non-Physicists]

Exam

Regulations

Old Exams

This Year's Exam