Numerisches Programmieren - Winter 14
- Term
- Winter 2014/15
- Lecturer
- tba
- Time and Place
- tba
- Übungen: siehe unter Übungstermine
- Audience
- Studiengang Informatik (Bachelor) und Informatik: Games Engineering (Bachelor) (Modul IN0019)
- Tutorials
- Nikola Tchipev, Sebastian Rettenberger
- Exam
- tba
- Semesterwochenstunden / ECTS Credits
- 5 SWS (2V + 3Ü) / 6 Credits
- TUMonline
- tba
Willkommen zur Veranstaltung Numerisches Programmieren im Wintersemester 2014/2015!
Das Numerische Programmieren ist eine Pflichtveranstaltung im Bachelor Informatik und Bachelor Informatik: Games Engineering, bestehend aus einer zweistündigen Vorlesung mit Klausur und einem dreistündigen Übungsteil. Dementsprechend richtet sie sich primär an Studierende der Informatik (Bachelor) und Informatik: Games Engineering (Bachelor) im 5. Semester. Vorausgesetzt werden fundierte Kenntnisse aus den Vorlesungen Lineare Algebra für Informatiker und Analysis für Informatiker sowie der Programmiersprache Java. Alle weiteren Informationen zu Vorlesung, Übungsbetrieb, Programmieraufgaben und Klausur finden Sie unten.
Folien von Prof. Bungartz aus dem WiSe 2013/14
Vorlesung | Datum | Thema |
1 | 21.10.2013 | Introduction and Literature |
2 | 28.10.2013 | Interpolation |
3 | 18.11.2013 | Numerical Integration |
4 | 02.12.2013 | Direct Methods for Solving Systems of Linear Equations |
5 | 09.12.2013 | Ordinary Differential Equations |
6 | 13.01.2014 | Iterative Methods: Roots and Optima |
7 | 27.01.2014 | Iterative Methods: The Symmetric Eigenvalue Problem |
8 | 03.02.2014 | Hardware-Aware Numerics |
Literatur
Zur Vertiefung der Inhalte, als Lernvorlage und Nachschlagewerk empfiehlt sich insbesondere das Buch von Prof. Huckle Numerische Methoden - Eine Einführung für Informatiker, Naturwissenschaftler, Ingenieure und Mathematiker. Einen kleinen Ausschnitt aus der Vielzahl an Veröffentlichungen zu den Themen der Vorlesung stellt die folgende Literaturliste dar.
- Dahmen, Reusken: Numerik für Ingenieure und Naturwissenschaftler, Springer-Verlag, Berlin-Heidelberg, 2. Auflage 2008
- Huckle, Schneider: Numerische Methoden - Eine Einführung für Informatiker, Naturwissenschaftler, Ingenieure und Mathematiker, Springer-Verlag, Berlin-Heidelberg, 2. Auflage 2006
- Späth: Numerik - eine Einführung für Mathematiker und Informatiker, Vieweg, Braunschweig-Wiesbaden, 1994
- Schwarz: Numerische Mathematik, Teubner, Stuttgart, 4. Auflage 1997 (Nachdruck 2001)
- Stoer, Bulirsch: Numerische Mathematik, Springer-Verlag, Berlin Heidelberg, Band 1 (10. Auflage 2007) und Band 2 (5. Auflage 2005)
- Press, Flannery, Teukolsky, Vetterling: Numerical Recipes Cambridge University Press, http://www.nr.com/
- Golub, Ortega: Scientific Computing: An Introduction with Parallel Computing Academic Press, 1993
- Java Blockkurs des Wintersemesters 05/06
- Java-Seiten von Sun Microsystems
- Java FAQ Archives
Korrektur von Druckfehlern der 1. Auflage des Buches von Prof. Huckle
Lösungen zu einigen Aufgaben des Buches von Prof. Huckle
Grundlagen zur Wiederholung/Auffrischung/Vertiefung:
- Arens, Hettlich, Karpfinger, Kockelkorn, Lichtenegger, Stachel: Mathematik, Spektrum Akademischer Verlag, Heidelberg, 2008
Übungen
Die Übungsaufgaben erhalten Sie in der Vorlesung in Papierform jeweils in der Woche vor den Übungen. Somit haben Sie Zeit, die Aufgaben vorher durchzugehen, bevor Sie sie in den 120-minütigen Übungen (nach einer kurzen Wiederholung des Vorlesungsstoffs) großteils selbständig bearbeiten werden. Zudem gibt es die Aufgabenblätter und die Lösungen aus den Tutorien als PDF zum Download.
Übungstermine
tba
Aufgaben & Lösungen
Hier finden Sie die Angabenblätter sowie (nach Ablauf der jeweiligen Übungswoche) die Musterlösungen zu den Tutorübungen. Außerdem werden hier matlab-Dateien und Links zur Verfügung gestellt, die Sachverhalte der Übungen verdeutlichen und mit denen Sie spielen können. Falls Sie keine matlab-Version zur Verfügung haben, können Sie auch Octave unter Linux verwenden, indem Sie in der jeweiligen Datei die plot-Umgebung von Matlab aus- und die von Octave einkommentieren. Viel Spaß!
Folgende Aufgaben sollten Sie mit Ihrem Wissen aus der Oberstufe und den Vorlesungen Lineare Algebra und Analysis für Informatiker bewältigen. Sie dienen lediglich der Wiederholung und zur Orientierung an den als bekannt vorausgesetzten Grundlagen dieser Veranstaltung: Basiswissen Numerisches Programmieren
Programmieraufgaben
Hier finden Sie die Aufgabenstellung (PDF-Dokument) und den Programmrahmen (TAR-Archiv mit Quellcode) der einzelnen Programmieraufgaben.