Personal tools

Parallel Numerics - Winter 15

From Sccswiki

Jump to: navigation, search


Term
Winter 2015
Lecturer
Univ.-Prof. Dr. Thomas Huckle
Time and Place
Lecture: Tuesday (first lecture: 13.10.2015), 12:30 - 14:00, MI 00.13.009A
Tutorial: Friday (first tutorial: 23.10.2015), 10:15 - 11:45, MI 00.13.009A, see Tutorials
Audience
IN2012
Master CSE
Master Mathematics
Master Informatics
Tutorials
Christoph Riesinger
Exam
Regular Exam:
101 (Interims Hörsaal 1), Boltzmannstr. 5
Mon, 15.02.2016, 08:30 - 10:00 (for details, see Regular Exam!)
Repeat Exam:
PH 2501 (Rudolf-Mößbauer-Hörsaal), James-Franck-Str. 1
Fri, 08.04.2016, 13:30 - 15:00 (for details, see Repeat Exam!)
Semesterwochenstunden / ECTS Credits
4 SWS (2V + 2Ü) / 5 credits
TUMonline
Lecture and tutorials Parallel Numerics



Contents

News

20.04.2016 The exam review for the repeat exam takes place in room MI 00.12.019 on Monday, April 25, 2016 from 13:00 to 14:00.
24.02.2016 The exam review for the regular exam takes place in room MI 02.07.023 on Tuesday, March 29, 2016 from 12:00 to 13:00.
20.10.2015 The lecture on 03.11.2015 is switched with the turorial on 06.11.2015.
16.06.2015 There are NO lectures and tutorials in the weeks from 21.12.2015 to 08.01.2016.
16.06.2015 Tutorials take place on Friday from 10:15 und 11:45 Uhr in room MI 02.07.023. First tutorial takes place on 23.10.2015.
16.06.2015 Lectures take place on Tuesday from 12:15 und 13:45 Uhr in room MI 02.07.023. First lecture takes place on 13.10.2015.

Lecture slides

Number Date Slides
1 13.10.2015 vorlesung_1.pdf
2 20.10.2015 vorlesung_2.pdf
3 27.10.2015 vorlesung_3.pdf
4 06.11.2015 vorlesung_4.pdf
5 10.11.2015 vorlesung_5.pdf
6 17.11.2015 vorlesung_6.pdf
7 24.11.2015 vorlesung_7.pdf
8 01.12.2015 vorlesung_8.pdf
9 08.12.2015 vorlesung_9.pdf
10 15.12.2015 vorlesung_10.pdf
11 12.01.2016 vorlesung_11.pdf
12 19.01.2016 vorlesung_12.pdf
13 26.01.2016 vorlesung_13.pdf
14 02.02.2016 Exam preparation

Tutorials

Number Date Topic Worksheet Proposal for solution Code
1 23.10.2015 Flynn's Taxonomy & MPI Basics description01.pdf solution01.pdf sheet01_task05.cpp
sheet01_task06.cpp
2 30.10.2015 Numerical Integration & P2P Communication I description02.pdf solution02.pdf sheet02_task01.cpp
3 03.11.2015 Vector-Vector Operations & P2P Communication II description03.pdf solution03.pdf sheet03_task05.cpp
4 13.11.2015 Matrix-Matrix-Operations & P2P Communication III description04.pdf solution04.pdf sheet04_task05.cpp
5 20.11.2015 Parallel LU Decomposition & Collective Operations description05.pdf solution05.pdf sheet05_task03.cpp
6 27.11.2015 Tridiagonal Matrices, Hockney/Golub method & Message Tags description06.pdf solution06.pdf sheet06_task01_serial.cpp
sheet06_task01_parallel.cpp
sheet06_task03.cpp
7 04.12.2015 Sparse Matrix-Vector Multiplication & MPI Communicators description07.pdf solution07.pdf sheet07_task03.cpp
8 11.12.2015 Stationary Methods description08.pdf solution08.pdf sheet08_task03_serial.cpp

sheet08_task03_parallel.cpp

9 18.12.2015 Domain Decomposition description09.pdf solution09.pdf -
10 15.01.2016 Gradient Methods, Preconditioning & Eigenvalues description10.pdf solution10.pdf sheet10_task01_serial.c

sheet10_task01_parallel.c
sheet10_task03.m

Exam

Regular Exam

The regular exam takes place in room 101 (Interims Hörsaal 1), Boltzmannstr. 5 on Monday, February 15, 2016 from 08:30 to 10:00.

The exam review for the regular exam takes place in room MI 02.07.023, Boltzmannstr. 3 on Tuesday, March 29, 2016 from 12:00 to 13:00.

Repeat Exam

The repeat exam takes place in room PH 2501 (Rudolf-Mößbauer-Hörsaal), James-Franck-Str. 1 on Friday, April 08, 2016 from 13:30 to 15:00.

The exam review for the repeat exam takes place in room MI 00.12.019, Boltzmannstr. 3 on Monday, April 25, 2016 from 13:00 to 14:00.

Allowed material for both exams

Old exams

Semester Exam Solution
Winter term 2010/11 exam solution
Winter term 2009/10 exam solution
Winter term 2008/09 exam partial solution
Winter term 2007/08 exam -
Winter term 2006/07 exam -
Winter term 2005/06 exam -

Literature & external links