Scientific Computing II - Summer 13: Difference between revisions

From Sccswiki
Jump to navigation Jump to search
No edit summary
Line 67: Line 67:
|| [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss13/uebungen/blatt1angabe.pdf Sheet1], [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss13/uebungen/blatt1solution.pdf Solution]  
|| [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss13/uebungen/blatt1angabe.pdf Sheet1], [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss13/uebungen/blatt1solution.pdf Solution]  
|| <!--[http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss12/tutorial_00/00_organisation-and-introduction.pdf Slides]|| [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss12/tutorial_00/code.tar.gz Matlab Code] -->
|| <!--[http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss12/tutorial_00/00_organisation-and-introduction.pdf Slides]|| [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss12/tutorial_00/code.tar.gz Matlab Code] -->
|-
| Apr 23 || [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss13/multigrid.pdf Multigrid Methods], [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss13/MG-illustrations.pdf Animations] 
|| Apr 29
|| <!--[http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss12/tutorial_01/01_iterative_tutorial.pdf Iterative Solvers] [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss12/tutorial_01/01_iterative_homework.pdf Homework Sheet] || [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss12/tutorial_01/solvers.tar.gz Matlab Code]-->
<!--
<!--
|-
| Apr 24 || [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss12/multigrid.pdf Multigrid Methods], [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss12/lecture_02.ppt Animations] 
|| Apr 30
|| [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss12/tutorial_01/01_iterative_tutorial.pdf Iterative Solvers] [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss12/tutorial_01/01_iterative_homework.pdf Homework Sheet] || [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss12/tutorial_01/solvers.tar.gz Matlab Code]
|-
|-
| Mai 1 || (holiday - no lecture) ||  
| Mai 1 || (holiday - no lecture) ||  

Revision as of 14:22, 22 April 2013

Term
Summer 13
Lecturer
Prof. Dr. Michael Bader
Time and Place
Tuesday 10-12, lecture room MI 02.07.023
First Lecture: Apr 16
Audience
Computational Science and Engineering, 2nd semester
Tutorials
Wolfgang Eckhardt Philipp Neumann
Monday 10-12, lecture room MI 02.07.023,
First Tutorial: April 22
Exam
written exam
Semesterwochenstunden / ECTS Credits
2V + 2Ü / 5 Credits
TUMonline
Scientific Computing II



Announcements

Exam

  • written exam

Contents

This course provides a deeper knowledge in two important fields of scientific computing:

  • iterative solution of large sparse systems of linear equations:
    • relaxation methods
    • multigrid methods
    • steepest descent
    • conjugate gradient methods
  • molecular dynamics simulations
    • the physical model
    • the mathematical model
    • approximations and discretization
    • implementational aspects
    • parallelisation
    • examples of nanofluidic simulations

The course is conceived for computer scientists, mathematicians, engineers, or natural scientists with already a background in the numerical treatment of (partial) differential equations.

Lecture Notes and Material

lecture material tutorial exercise matlab
Apr 16 Introduction, Relaxation Methods Apr 22 Sheet1, Solution
Apr 23 Multigrid Methods, Animations Apr 29

Further Material

Annotated slides for the lecture in summer 2010 /(given by Dr. Tobias Weinzierl) are available from the TeleTeachingTool Lecture Archive

Matlab (together with installation instructions) is available from https://matlab.rbg.tum.de/

Literature

  • William L. Briggs, Van Emden Henson, Steve F. McCormick. A Multigrid Tutorial. Second Edition. SIAM. 2000.
  • J.R. Shewchuk. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain (download as PDF). 1994.
  • M. Griebel, S. Knapek, G. Zumbusch, and A. Caglar. Numerische Simulation in der Molekulardynamik. Springer, 2004.
  • M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press, 2003.
  • D. Frenkel and B. Smith. Understanding Molecular Simulation from Algorithms to ASpplications. Academic Press (2nd ed.), 2002.
  • R. J. Sadus. Molecular Simulation of Fluids; Theory, Algorithms and Object-Orientation. Elsevier, 1999.
  • D. Rapaport. The art of molecular dynamics simulation. Camebridge University Press, 1995.