Scientific Computing II - Summer 13: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
| Line 73: | Line 73: | ||
|| <!--[http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss12/tutorial_01/01_iterative_tutorial.pdf Iterative Solvers] [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss12/tutorial_01/01_iterative_homework.pdf Homework Sheet] || [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss12/tutorial_01/solvers.tar.gz Matlab Code]--> | || <!--[http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss12/tutorial_01/01_iterative_tutorial.pdf Iterative Solvers] [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss12/tutorial_01/01_iterative_homework.pdf Homework Sheet] || [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss12/tutorial_01/solvers.tar.gz Matlab Code]--> | ||
|- | |- | ||
| Apr 30 || | | Apr 30 || [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss13/multigrid.pdf Multigrid Methods] (Part II) | ||
|| May 06 || [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss13/uebungen/blatt3angabe.pdf Sheet3] | || May 06 || [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss13/uebungen/blatt3angabe.pdf Sheet3] | ||
<!-- | <!-- | ||
| Line 116: | Line 116: | ||
| July 17 || Outlook on [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss12/moldyn_04.pdf long-range potentials] (not part of the exam) || || || | | July 17 || Outlook on [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss12/moldyn_04.pdf long-range potentials] (not part of the exam) || || || | ||
--> | --> | ||
|} | |} | ||
= Literature = | = Literature = | ||
Revision as of 07:20, 30 April 2013
- Term
- Summer 13
- Lecturer
- Prof. Dr. Michael Bader
- Time and Place
- Tuesday 10-12, lecture room MI 02.07.023
First Lecture: Apr 16 - Audience
- Computational Science and Engineering, 2nd semester
- Tutorials
- Wolfgang Eckhardt Philipp Neumann
Monday 10-12, lecture room MI 02.07.023,
First Tutorial: April 22 - Exam
- written exam
- Semesterwochenstunden / ECTS Credits
- 2V + 2Ü / 5 Credits
- TUMonline
- Scientific Computing II
Announcements
Exam
- written exam
Contents
This course provides a deeper knowledge in two important fields of scientific computing:
- iterative solution of large sparse systems of linear equations:
- relaxation methods
- multigrid methods
- steepest descent
- conjugate gradient methods
- molecular dynamics simulations
- the physical model
- the mathematical model
- approximations and discretization
- implementational aspects
- parallelisation
- examples of nanofluidic simulations
The course is conceived for computer scientists, mathematicians, engineers, or natural scientists with already a background in the numerical treatment of (partial) differential equations.
Lecture Notes and Material
| lecture | material | tutorial | exercise | matlab |
| Apr 16 | Introduction, Relaxation Methods | Apr 22 | Sheet1, Solution | |
| Apr 23 | Multigrid Methods, Animations | Apr 29 | Sheet2, Solution, smoothers.m | |
| Apr 30 | Multigrid Methods (Part II) | May 06 | Sheet3 |
Literature
- William L. Briggs, Van Emden Henson, Steve F. McCormick. A Multigrid Tutorial. Second Edition. SIAM. 2000.
- Ulrich Trottenberg, Cornelis Oosterlee, Anton Schüller. Multigrid. Elsevier, 2001.
- J.R. Shewchuk. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain (download as PDF). 1994.
- M. Griebel, S. Knapek, G. Zumbusch, and A. Caglar. Numerische Simulation in der Molekulardynamik. Springer, 2004.
- M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press, 2003.
- D. Frenkel and B. Smith. Understanding Molecular Simulation from Algorithms to ASpplications. Academic Press (2nd ed.), 2002.
- R. J. Sadus. Molecular Simulation of Fluids; Theory, Algorithms and Object-Orientation. Elsevier, 1999.
- D. Rapaport. The art of molecular dynamics simulation. Camebridge University Press, 1995.
Further Material
Annotated slides for the lecture in summer 2010 /(given by Dr. Tobias Weinzierl) are available from the TeleTeachingTool Lecture Archive
Matlab (together with installation instructions) is available from https://matlab.rbg.tum.de/