Fundamental Algorithms - Winter 14: Difference between revisions

From Sccswiki
Jump to navigation Jump to search
Line 30: Line 30:


== Lecture Slides ==
== Lecture Slides ==
; Introduction - Algorithms, Fibonacci example, Asymptotics (Oct 13)
; Introduction - Algorithms, Fibonacci example, Asymptotics (Oct 13, 20)
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/fundalg01.pdf slides]
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/fundalg01.pdf slides]
; Sorting - InsertSort, MergeSort, QuickSort (Oct 20, 27)
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/fundalg02.pdf slides]
<!--
<!--
; Sorting - InsertSort, MergeSort, QuickSort (Oct 28, Nov 4, Nov 11)
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS13/fundalg02.pdf slides] (with corrected proof for InsertionSort)
; Recurrences (Nov 11)
; Recurrences (Nov 11)
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS13/fundalg02b.pdf slides]  
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS13/fundalg02b.pdf slides]  

Revision as of 13:48, 18 October 2014

Term
Winter 14
Lecturer
Prof. Dr. Michael Bader
Time and Place
Mon 8.30-10.00, lecture hall MI HS 3 (first lecture on Oct 13, 8.30)
Audience
Computational Science and Engineering; Biomedical Computing (elective)
Tutorials
---
Exam
written exam at end of semester
Semesterwochenstunden / ECTS Credits
2 SWS (2V) / 3 ECTS
TUMonline
https://campus.tum.de/tumonline/lv.detail?clvnr=950160214 (lecture),
https://campus.tum.de/tumonline/wbStpModHB.detailPage?&pKnotenNr=458187 (module description)



Contents

The course will provide an overview on the analysis of fundamental algorithms. Topics will be:

  • Fundamentals: Models of Computation, Complexity Measures
  • Sorting: Bubble-Sort, Merge-Sort, Quick-Sort, Median-Algorithms, Lower Bounds, etc.: sorting in parallel
  • Searching: Hashing, Search Tress, etc.
  • Arithmetic Problems: parallel prefix computation, parallel matrix and vector operations
  • Foundations of parallel algorithms and simple models of parallel computation
  • Algorithms on (weighted) graphs: traversals, shortest paths, etc.

Lecture Notes and Material

will be made available during the course.

Lecture Slides

Introduction - Algorithms, Fibonacci example, Asymptotics (Oct 13, 20)
slides
Sorting - InsertSort, MergeSort, QuickSort (Oct 20, 27)
slides

Worksheets

O-notation, etc. (Oct 13)
worksheet


Literature

  • Cormen, Leiserson, Rivest, Stein: Introduction to Algorithms; MIT Press
  • Berman, Paul: Algorithms: Sequential, Parallel, and Distributed; Cengage Learning Emea 2004
  • Heun: Grundlegende Algorithmen; Vieweg 2000
  • Sedgewick: Algorithms; Pearson Education
  • Shackleford, Computing and Algorithms; Addison Wesley Longman
  • Kleinberg, Tardos: Algorithm Design; Pearson Education