Fundamental Algorithms - Winter 14: Difference between revisions

From Sccswiki
Jump to navigation Jump to search
Line 68: Line 68:
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/worksheets/fundalg4.pdf worksheet] and [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/worksheets/fundalg4sol.pdf solution]
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/worksheets/fundalg4.pdf worksheet] and [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/worksheets/fundalg4sol.pdf solution]
; Sequential and Binary Search (Dec 2)
; Sequential and Binary Search (Dec 2)
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/worksheets/fundalg7.pdf worksheet] <!-- and [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/worksheets/fundalg7sol.pdf solution] -->
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/worksheets/fundalg7.pdf worksheet] and [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/worksheets/fundalg7sol.pdf solution]
<!--
<!--
; PRAM - Linear Algebra and Prefix Problem (Nov 18)
; PRAM - Linear Algebra and Prefix Problem (Nov 18)
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/worksheets/fundalg5.pdf worksheet] and [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/worksheets/fundalg5sol.pdf solution] (slightly updated; leaves Ex. 3 for next week)
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/worksheets/fundalg5.pdf worksheet] and [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/worksheets/fundalg5sol.pdf solution] (slightly updated; leaves Ex. 3 for next week)
; PRAM - Prefix Problem and BucketSort (Nov 25)
; PRAM - Prefix Problem and BucketSort (Nov 25)
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/worksheets/fundalg6.pdf worksheet] and [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/worksheets/fundalg6sol.pdf solution] (includes Ex. 3 from previous week)
; AVL trees (Dec 9)
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/worksheets/fundalg8.pdf worksheet] and [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/worksheets/fundalg8sol.pdf solution]
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/worksheets/fundalg8.pdf worksheet] and [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/worksheets/fundalg8sol.pdf solution]
; Hashing (Dec 16)
; Hashing (Dec 16)
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/worksheets/fundalg9.pdf worksheet] and [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/worksheets/fundalg9sol.pdf solution]
: [: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/worksheets/fundalg6.pdf worksheet] and [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/worksheets/fundalg6sol.pdf solution] (includes Ex. 3 from previous week)
; AVL trees (Dec 9)
http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/worksheets/fundalg9.pdf worksheet] and [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/worksheets/fundalg9sol.pdf solution]
; Graphs (Jan 13)
; Graphs (Jan 13)
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/worksheets/fundalg10.pdf worksheet] and [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/worksheets/fundalg10sol.pdf solution]
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/worksheets/fundalg10.pdf worksheet] and [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/worksheets/fundalg10sol.pdf solution]

Revision as of 12:15, 21 November 2014

Term
Winter 14
Lecturer
Prof. Dr. Michael Bader
Time and Place
Mon 8.30-10.00, lecture hall MI HS 3 (first lecture on Oct 13, 8.30)
Audience
Computational Science and Engineering; Biomedical Computing (elective)
Tutorials
---
Exam
written exam at end of semester
Semesterwochenstunden / ECTS Credits
2 SWS (2V) / 3 ECTS
TUMonline
https://campus.tum.de/tumonline/lv.detail?clvnr=950160214 (lecture),
https://campus.tum.de/tumonline/wbStpModHB.detailPage?&pKnotenNr=458187 (module description)



Contents

The course will provide an overview on the analysis of fundamental algorithms. Topics will be:

  • Fundamentals: Models of Computation, Complexity Measures
  • Sorting: Bubble-Sort, Merge-Sort, Quick-Sort, Median-Algorithms, Lower Bounds, etc.: sorting in parallel
  • Searching: Hashing, Search Tress, etc.
  • Arithmetic Problems: parallel prefix computation, parallel matrix and vector operations
  • Foundations of parallel algorithms and simple models of parallel computation
  • Algorithms on (weighted) graphs: traversals, shortest paths, etc.

Lecture Notes and Material

will be made available during the course.

Lecture Slides

Introduction - Algorithms, Fibonacci example, Asymptotics (Oct 13, 20)
slides
Sorting - InsertSort, MergeSort, QuickSort, BucketSort (Oct 20, 27; Nov 3)
slides
(corrected partitioning algorithm, now fully according to Hoare's algorithm; the previous partitioning algorithm only worked, if all elements of A have distinct size)
Recurrences (Nov 3)
slides
Searching (Nov 10, 17)
slides
AVL trees(Nov 10, 17)
slides

Worksheets

O-notation, etc. (Oct 13)
worksheet and solution
Complexity and Sorting (Oct 20)
worksheet and solution (corrected Ex. 1)
MergeSort (Oct 27)
worksheet and solution
Recurrences(Nov 3)
worksheet and solution
Sequential and Binary Search (Dec 2)
worksheet and solution


Literature

  • Cormen, Leiserson, Rivest, Stein: Introduction to Algorithms; MIT Press
  • Berman, Paul: Algorithms: Sequential, Parallel, and Distributed; Cengage Learning Emea 2004
  • Heun: Grundlegende Algorithmen; Vieweg 2000
  • Sedgewick: Algorithms; Pearson Education
  • Shackleford, Computing and Algorithms; Addison Wesley Longman
  • Kleinberg, Tardos: Algorithm Design; Pearson Education