Fundamental Algorithms - Winter 09: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 34: | Line 34: | ||
; Recurrences : Dec 18 | ; Recurrences : Dec 18 | ||
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/slides/fundalg_recurrence.pdf slides] | : [http://www5.in.tum.de/lehre/vorlesungen/fundalg/slides/fundalg_recurrence.pdf slides] | ||
; The PRAM Model : Jan 8 | |||
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/slides/fundalg06.pdf slides] | |||
== Worksheets == | == Worksheets == | ||
Line 49: | Line 51: | ||
; RAM : Dec 11 | ; RAM : Dec 11 | ||
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/worksheets/fundalg7.pdf worksheet], [http://www5.in.tum.de/lehre/vorlesungen/fundalg/worksheets/fundalg7sol.pdf solution] | : [http://www5.in.tum.de/lehre/vorlesungen/fundalg/worksheets/fundalg7.pdf worksheet], [http://www5.in.tum.de/lehre/vorlesungen/fundalg/worksheets/fundalg7sol.pdf solution] | ||
; PRAM : Jan 8 | |||
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/worksheets/fundalg8.pdf worksheet] | |||
== Further Material == | == Further Material == |
Revision as of 08:04, 8 January 2010
- Term
- Winter 09
- Lecturer
- Jun.-Prof. Dr. Michael Bader
- Time and Place
- Friday, 9-11, lecture hall MI 03.07.023 (!room change!)
- Audience
- Computational Science and Engineering, 1st semester (Module IN2157); Biomedical Computing
- Tutorials
- -
- Exam
- written exam (preliminary date: Feb 15, 2010)
- Semesterwochenstunden / ECTS Credits
- 2 SWS (2V) / 3 Credits
- TUMonline
- {{{tumonline}}}
Contents
The course will provide an overview of fundamental algorithms and an introduction to the analysis of algorithms. Topics will be:
- Fundamentals: Models of Computation, Complexity Measures
- Sorting: Bubble-Sort, Merge-Sort, Quick-Sort, Median-Algorithms, Lower Bounds, etc.: sorting in parallel
- Searching: Hashing, Search Tress, etc.
- Arithmetic Problems: parallel prefix computation, parallel matrix and vector operations
- Graph Algorithms: Transitive Closure, Shortest Path Problems, Minimum Spanning Trees (if time allows)
Lecture Notes and Material
Slides from the Lecture
- Introduction - Algorithms, Fibonacci example, growth of functions
- Oct 30, Nov 6
- slides
- Sorting Algorithms
- Nov 6, Nov 13
- slides
- More Sorting
- Nov 20, Nov 27
- slides
- Selecting
- Dec 04
- slides
- Random Access Machines
- Dec 11
- slides
- Recurrences
- Dec 18
- slides
- The PRAM Model
- Jan 8
- slides
Worksheets
- Growth of functions
- Oct 30
- worksheet, solution
- Complexity of Algorithms, Sorting on Matrices
- Nov 6
- worksheet, solution
- Recurrences - Complexity of MergeSort and QuickSort
- Nov 13
- worksheet, solution
- CountingSort
- Nov 20
- worksheet, solution
- Selecting
- Dec 4
- worksheet, solution
- RAM
- Dec 11
- worksheet, solution
- PRAM
- Jan 8
- worksheet
Further Material
Literature
- Cormen, Leiserson, Rivest, Stein: Introduction to Algorithms, MIT Press
- Heun: Grundlegende Algorithmen, Vieweg 2000
- Sedgewick: Algorithms, Pearson Education
- Shackleford, Computing and Algorithms, Addison Wesley Longman
- Kleinberg, Tardos: Algorithm Design, Pearson Education