Fundamental Algorithms - Winter 10: Difference between revisions

From Sccswiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 60: Line 60:
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/worksheets/fundalg7.pdf worksheet], [http://www5.in.tum.de/lehre/vorlesungen/fundalg/worksheets/fundalg7sol.pdf solution]
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/worksheets/fundalg7.pdf worksheet], [http://www5.in.tum.de/lehre/vorlesungen/fundalg/worksheets/fundalg7sol.pdf solution]
; PRAM :  Jan 8
; PRAM :  Jan 8
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/worksheets/fundalg8.pdf worksheet]
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/worksheets/fundalg8.pdf worksheet], [http://www5.in.tum.de/lehre/vorlesungen/fundalg/worksheets/fundalg8sol.pdf solution]
; Searching :  Jan 18
; Searching :  Jan 18
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/worksheets/fundalg9.pdf worksheet]
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/worksheets/fundalg9.pdf worksheet]

Revision as of 10:02, 18 January 2011

Term
Winter 10
Lecturer
Dr. Dirk Pflüger
Time and Place
Tuesday, 9:00-10:30, lecture hall MI 02.07.023; first lecture November 2
Audience
Computational Science and Engineering, 1st semester (Module IN2157); Biomedical Computing
Tutorials
-
Exam
written exam
Semesterwochenstunden / ECTS Credits
2 SWS (2V) / 3 Credits
TUMonline
{{{tumonline}}}



Contents

The course will provide an overview of fundamental algorithms and an introduction to the analysis of algorithms. Topics will be:

  • Fundamentals: Models of Computation, Complexity Measures
  • Sorting: Bubble-Sort, Merge-Sort, Quick-Sort, Median-Algorithms, Lower Bounds, etc.: sorting in parallel
  • Searching: Hashing, Search Tress, etc.
  • Arithmetic Problems: parallel prefix computation, parallel matrix and vector operations
  • Graph Algorithms: Transitive Closure, Shortest Path Problems, Minimum Spanning Trees (if time allows)

Current News

  • nothing special

Lecture Notes and Material

Slides from the Lecture

Introduction - Algorithms, Fibonacci example, growth of functions
Nov 2
slides (Update loop invariants, 08.11.)
Sorting Algorithms
Nov 9, 16, 23
slides (few typos corrected, 15.11., Update last slide, 24.11.2011)
Recurrences
Nov 30
slides (corrected prerequisites for Master Theorem, 6.12.)
More Sorting
Dec 7, 14
slides
Selecting
Dec 14, 21
slides
Random Access Machines
Dec 21
slides (introduced Vector x, 21.12.)
The PRAM Model
Jan 11
slides (Update of three slides, 12.01.)
Searching
Jan 18
slides
AVL Trees
Jan 25
slides


Worksheets

Growth of functions
Nov 9
worksheet, solution
Complexity of Algorithms, Sorting on Matrices
Nov 16
worksheet, solution
Recurrences - Complexity of MergeSort and QuickSort
Nov 23
worksheet, solution
CountingSort
Nov 30
worksheet, solution
Recurrences
Dec 07
worksheet, solution
Selecting
Dec 14
worksheet, solution
RAM
Dec 21
worksheet, solution
PRAM
Jan 8
worksheet, solution
Searching
Jan 18
worksheet


Literature

Recommended:

  • Cormen, Leiserson, Rivest, Stein: Introduction to Algorithms, MIT Press

For parallel RAM:

  • Berman, Paul: Fundamentals of Sequential and Parallel Algorithms

Also helpful:

  • Heun: Grundlegende Algorithmen, Vieweg 2000
  • Sedgewick: Algorithms, Pearson Education
  • Shackleford, Computing and Algorithms, Addison Wesley Longman
  • Kleinberg, Tardos: Algorithm Design, Pearson Education