Algorithms of Scientific Computing - Summer 10
- Term
- Summer 10
- Lecturer
- Tobias Neckel, Dirk Pflüger
- Time and Place
- Tuesdays 10:15-11:45 and Thursdays 10:15-11:45, room MI 02.07.023, starting 20/04/2010
- Tutorial: Wednesdays 10:15-11:45, room MI 02.07.023, starting 28/04/2010
- Audience
- Modul IN2001
- Informatik Diplom: Wahlpflichtfach im Bereich theoretische Informatik
- Informatik Master: Wahlfach im Fachgebiet "Algorithmen und Wissenschaftliches Rechnen"
- Informatik Master: Elective topic, subject area "Algorithms and Scientific Computing"
- Informatik/Wirtschaftsinformatik Bachelor: Wahlfach
- Studierende der Mathematik/Technomathematik, Natur- und Ingenieurwissenschaften
- Tutorials
- Kristof Unterweger, Gerrit Buse
- Exam
- Written Exam
- Semesterwochenstunden / ECTS Credits
- 6 SWS (4V + 2Ü) / 8 Credits
- TUMonline
- {{{tumonline}}}
What's ASC (former AWR) about?
Many applications in computer science require methods of (prevalently numerical) mathematics - especially in science and engineering, of course, but as well in surprisingly many areas that one might suspect to be directly at the heart of computer science:
Consider, for example, Fourier and wavelet transformations, which are indispensable in image processing and image compression. Space filling curves (which have been considered to be "topological monsters" and a useless theoretical bauble at the end of the 19th century) have become important methods used for parallelization and the implementation of data bases. Numerical methods for minimization and zero-setting are an essential foundation of Neural Networks in machine learning.
Algorithms of Scientific Computing (former Algorithmen des Wissenschaftlichen Rechnens) provides a generally understandable and algorithmically oriented introduction into the foundations of such mathematical methods. Topics are:
- The fast Fourier transformation (FFT) and some of its variants:
- FCT (Fast Cosine Transform), real FFT, Application for compression of video and audio data
- Space filling curves (SFCs):
- Construction and properies of SFCs
- Application for parallelization and to linearize multidimensional data spaces in data bases
- Hierarchical and recursive methods in scientific computing
- From Archimede's quadrature to the hierarchical basis
- Cost vs. accuracy
- Sparse grids, wavelets, multi-grid methods
Material
Introduction
Fast Fourier Transform
- Discrete Fourier Transform (DFT) - 20.04.10
- Fast Fourier Transform (FFT) - 22.04.10
- FFT on Real-valued Data - 27.04.10
- additional info: paper Paul N. Swarztrauber - Symmetric FFTs (access via LRZ proxy necessary)
Worksheets and Solutions
Number | Topic | Worksheet | Date | Solution |
---|---|---|---|---|
1 | Discrete Fourier Transform | Worksheet 1 | 28.4. | Solution 1 pallas1.mws |
Literature
Fast Fourier Transform:
The lecture is oriented on:
- W.L. Briggs, Van Emden Henson: The DFT - An Owner's Manual for the Discrete Fourier Transform, SIAM, 1995
- Thomas Huckle, Stefan Schneider: Numerische Methoden - Eine Einführung für Informatiker, Naturwissenschaftler, Ingenieure und Mathematiker, Springer-Verlag, Berlin-Heidelberg, 2.Auflage 2006 (German only)
- Charles van Loan: Computational Frameworks for the Fast Fourier Transform, SIAM, 1992
Space-filling Curves:
- Hans Sagan: Space-Filling Curves, Springer-Verlag, 1994
- Lecture notes of Prof. Bader (German only)