Fundamental Algorithms - Winter 14: Difference between revisions

From Sccswiki
Jump to navigation Jump to search
Line 47: Line 47:
; Parallel Sorting, Odd-Even MergeSort (Dec 8, 15)
; Parallel Sorting, Odd-Even MergeSort (Dec 8, 15)
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/fundalg04.pdf slides]  
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/fundalg04.pdf slides]  
; Graphs (Dec 15)
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/fundalg08.pdf slides]
<!--
<!--
; MidTerm Test (Dec 23)
; MidTerm Test (Dec 23)
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/midterm.pdf exercises] and [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS13/midterm_solution.pdf solutions]
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/midterm.pdf exercises] and [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS13/midterm_solution.pdf solutions]
; Graphs (Jan 13, Jan 20)
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/fundalg08.pdf slides] (DF/BF traversals updated)
; Weighted Graphs (Jan 20, Jan 27)
; Weighted Graphs (Jan 20, Jan 27)
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/fundalg09.pdf slides] (Dijkstra and Prim Algorithm are excluded for the exam)
: [http://www5.in.tum.de/lehre/vorlesungen/fundalg/WS14/fundalg09.pdf slides] (Dijkstra and Prim Algorithm are excluded for the exam)

Revision as of 15:13, 13 December 2014

Term
Winter 14
Lecturer
Prof. Dr. Michael Bader
Time and Place
Mon 8.30-10.00, lecture hall MI HS 3 (first lecture on Oct 13, 8.30)
Audience
Computational Science and Engineering; Biomedical Computing (elective)
Tutorials
---
Exam
written exam at end of semester
Semesterwochenstunden / ECTS Credits
2 SWS (2V) / 3 ECTS
TUMonline
https://campus.tum.de/tumonline/lv.detail?clvnr=950160214 (lecture),
https://campus.tum.de/tumonline/wbStpModHB.detailPage?&pKnotenNr=458187 (module description)



Contents

The course will provide an overview on the analysis of fundamental algorithms. Topics will be:

  • Fundamentals: Models of Computation, Complexity Measures
  • Sorting: Bubble-Sort, Merge-Sort, Quick-Sort, Median-Algorithms, Lower Bounds, etc.: sorting in parallel
  • Searching: Hashing, Search Tress, etc.
  • Arithmetic Problems: parallel prefix computation, parallel matrix and vector operations
  • Foundations of parallel algorithms and simple models of parallel computation
  • Algorithms on (weighted) graphs: traversals, shortest paths, etc.

Lecture Notes and Material

will be made available during the course.

Lecture Slides

Introduction - Algorithms, Fibonacci example, Asymptotics (Oct 13, 20)
slides
Sorting - InsertSort, MergeSort, QuickSort, BucketSort (Oct 20, 27; Nov 3)
slides
(corrected partitioning algorithm, now fully according to Hoare's algorithm; the previous partitioning algorithm only worked, if all elements of A have distinct size)
Recurrences (Nov 3)
slides
Searching (Nov 10, 17)
slides
AVL trees(Nov 10, 17)
slides
Hash Tables (Nov 24)
slides
Parallel Algorithms and PRAM (Dec 1, 8)
slides
Parallel Sorting, Odd-Even MergeSort (Dec 8, 15)
slides
Graphs (Dec 15)
slides

Worksheets

O-notation, etc. (Oct 13)
worksheet and solution
Complexity and Sorting (Oct 20)
worksheet and solution (corrected Ex. 1)
MergeSort (Oct 27)
worksheet and solution
Recurrences(Nov 3)
worksheet and solution
Sequential and Binary Search (Nov 10)
worksheet and solution
AVL trees (Nov 17)
worksheet and solution
Hashing (Nov 24)
worksheet and solution
PRAM - Linear Algebra and Prefix Problem (Dec 1)
worksheet and solution
PRAM - Prefix Problem and BucketSort (Dec 8)
worksheet


Literature

  • Cormen, Leiserson, Rivest, Stein: Introduction to Algorithms; MIT Press
  • Berman, Paul: Algorithms: Sequential, Parallel, and Distributed; Cengage Learning Emea 2004
  • Heun: Grundlegende Algorithmen; Vieweg 2000
  • Sedgewick: Algorithms; Pearson Education
  • Shackleford, Computing and Algorithms; Addison Wesley Longman
  • Kleinberg, Tardos: Algorithm Design; Pearson Education