Scientific Computing II - Summer 13
- Term
- Summer 13
- Lecturer
- Prof. Dr. Michael Bader
- Time and Place
- Tuesday 10-12, lecture room MI 02.07.023
First Lecture: Apr 16 - Audience
- Computational Science and Engineering, 2nd semester
- Tutorials
- Wolfgang Eckhardt Philipp Neumann
Monday 10-12, lecture room MI 02.07.023,
First Tutorial: April 22 - Exam
- written exam
- Semesterwochenstunden / ECTS Credits
- 2V + 2Ü / 5 Credits
- TUMonline
- Scientific Computing II
Announcements
- lecture on Tuesday, July 2, will move to Monday, July 1, 12.00-13.30 (room MI 02.07.023): for organizational reasons, the lectures Numerical Programming II and Scientific Computing will be swapped on these two days
- due to the student assembly, the lecture on Tuesday, May 14, is skipped
- due to a short holiday (Whit Monday/Pentecost), lecture and tutorial on May 20/21 will be skipped
- on Mon 27, we will restart with a lecture (which replaces the usual tutorial)
Exam
- written exam
Contents
This course provides a deeper knowledge in two important fields of scientific computing:
- iterative solution of large sparse systems of linear equations:
- relaxation methods
- multigrid methods
- steepest descent
- conjugate gradient methods
- molecular dynamics simulations
- the physical model
- the mathematical model
- approximations and discretization
- implementational aspects
- parallelisation
- examples of nanofluidic simulations
The course is conceived for computer scientists, mathematicians, engineers, or natural scientists with already a background in the numerical treatment of (partial) differential equations.
Lecture Notes and Material
Literature
- William L. Briggs, Van Emden Henson, Steve F. McCormick. A Multigrid Tutorial. Second Edition. SIAM. 2000.
- Ulrich Trottenberg, Cornelis Oosterlee, Anton Schüller. Multigrid. Elsevier, 2001.
- J.R. Shewchuk. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain (download as PDF). 1994.
- M. Griebel, S. Knapek, G. Zumbusch, and A. Caglar. Numerische Simulation in der Molekulardynamik. Springer, 2004.
- M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press, 2003.
- D. Frenkel and B. Smith. Understanding Molecular Simulation from Algorithms to ASpplications. Academic Press (2nd ed.), 2002.
- R. J. Sadus. Molecular Simulation of Fluids; Theory, Algorithms and Object-Orientation. Elsevier, 1999.
- D. Rapaport. The art of molecular dynamics simulation. Camebridge University Press, 1995.
Further Material
Annotated slides for the lecture in summer 2010 /(given by Dr. Tobias Weinzierl) are available from the TeleTeachingTool Lecture Archive
Matlab (together with installation instructions) is available from https://matlab.rbg.tum.de/